Delivery of Inorganic Polyphosphate into Cells Using Amphipathic Oligocarbonate Transporters
Overview
Authors
Affiliations
Inorganic polyphosphate (polyP) is an often-overlooked biopolymer of phosphate residues present in living cells. PolyP is associated with many essential biological roles. Despite interest in polyP's function, most studies have been limited to extracellular or isolated protein experiments, as polyanionic polyP does not traverse the nonpolar membrane of cells. To address this problem, we developed a robust, readily employed method for polyP delivery using guanidinium-rich oligocarbonate transporters that electrostatically complex polyPs of multiple lengths, forming discrete nanoparticles that are resistant to phosphatase degradation and that readily enter multiple cell types. Fluorescently labeled polyPs have been monitored over time for subcellular localization and release from the transporter, with control over release rates achieved by modulating the transporter identity and the charge ratio of the electrostatic complexes. This general approach to polyP delivery enables the study of intracellular polyP signaling in a variety of applications.
Qian K, Hanf B, Cummins C, Fiedler D Angew Chem Int Ed Engl. 2024; 64(11):e202419147.
PMID: 39625829 PMC: 11891630. DOI: 10.1002/anie.202419147.
Kadhim I, Oluremi A, Chhetri B, Ghosh A, Ali N Bioengineering (Basel). 2024; 11(9).
PMID: 39329673 PMC: 11429465. DOI: 10.3390/bioengineering11090931.
An Update on Polyphosphate In Vivo Activities.
Schoeppe R, Waldmann M, Jessen H, Renne T Biomolecules. 2024; 14(8).
PMID: 39199325 PMC: 11352482. DOI: 10.3390/biom14080937.
Wang J, Zhao X, Tao Y, Wang X, Yan L, Yu K Nat Commun. 2024; 15(1):3534.
PMID: 38670989 PMC: 11053040. DOI: 10.1038/s41467-024-47947-5.
Muller W, Neufurth M, Wang S, Schroder H, Wang X Int J Nanomedicine. 2024; 19:1303-1337.
PMID: 38348175 PMC: 10860874. DOI: 10.2147/IJN.S446405.