» Articles » PMID: 30409975

A Structural Mechanism for Directing Corepressor-selective Inverse Agonism of PPARγ

Abstract

Small chemical modifications can have significant effects on ligand efficacy and receptor activity, but the underlying structural mechanisms can be difficult to predict from static crystal structures alone. Here we show how a simple phenyl-to-pyridyl substitution between two common covalent orthosteric ligands targeting peroxisome proliferator-activated receptor (PPAR) gamma converts a transcriptionally neutral antagonist (GW9662) into a repressive inverse agonist (T0070907) relative to basal cellular activity. X-ray crystallography, molecular dynamics simulations, and mutagenesis coupled to activity assays reveal a water-mediated hydrogen bond network linking the T0070907 pyridyl group to Arg288 that is essential for corepressor-selective inverse agonism. NMR spectroscopy reveals that PPARγ exchanges between two long-lived conformations when bound to T0070907 but not GW9662, including a conformation that prepopulates a corepressor-bound state, priming PPARγ for high affinity corepressor binding. Our findings demonstrate that ligand engagement of Arg288 may provide routes for developing corepressor-selective repressive PPARγ ligands.

Citing Articles

Ligand efficacy shifts a nuclear receptor conformational ensemble between transcriptionally active and repressive states.

MacTavish B, Zhu D, Shang J, Shao Q, He Y, Yang Z Nat Commun. 2025; 16(1):2065.

PMID: 40021712 PMC: 11871303. DOI: 10.1038/s41467-025-57325-4.


SETDB1 amplification in osteosarcomas: Insights from its role in healthy tissues and other cancer types.

Verdier E, Gaspar N, Marques Da Costa M, Marchais A Oncotarget. 2025; 16:51-62.

PMID: 39945463 PMC: 11823473. DOI: 10.18632/oncotarget.28688.


PPARγ modulator predictor (PGMP_v1): chemical space exploration and computational insights for enhanced type 2 diabetes mellitus management.

Amin S, Sessa L, Gayen S, Piotto S Mol Divers. 2025; .

PMID: 39891837 DOI: 10.1007/s11030-025-11118-5.


Unanticipated mechanisms of covalent inhibitor and synthetic ligand cobinding to PPARγ.

Shang J, Kojetin D Elife. 2024; 13.

PMID: 39556436 PMC: 11573348. DOI: 10.7554/eLife.99782.


Structural Studies on the Binding Mode of Bisphenols to PPARγ.

Useini A, Schwerin I, Kunze G, Strater N Biomolecules. 2024; 14(6).

PMID: 38927044 PMC: 11202036. DOI: 10.3390/biom14060640.


References
1.
Battye T, Kontogiannis L, Johnson O, Powell H, Leslie A . iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):271-81. PMC: 3069742. DOI: 10.1107/S0907444910048675. View

2.
Liberato M, Nascimento A, Ayers S, Lin J, Cvoro A, Silveira R . Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One. 2012; 7(5):e36297. PMC: 3359336. DOI: 10.1371/journal.pone.0036297. View

3.
Brust R, Lin H, Fuhrmann J, Asteian A, Kamenecka T, Kojetin D . Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. ACS Chem Biol. 2017; 12(4):969-978. PMC: 5652320. DOI: 10.1021/acschembio.6b01015. View

4.
Hughes T, Wilson H, de Vera I, Kojetin D . Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection. PLoS One. 2015; 10(8):e0134474. PMC: 4524620. DOI: 10.1371/journal.pone.0134474. View

5.
Bruning J, Chalmers M, Prasad S, Busby S, Kamenecka T, He Y . Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure. 2007; 15(10):1258-71. DOI: 10.1016/j.str.2007.07.014. View