» Articles » PMID: 3040691

Biosynthesis of Bacterial Glycogen: Primary Structure of Salmonella Typhimurium ADPglucose Synthetase As Deduced from the Nucleotide Sequence of the GlgC Gene

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1987 Sep 1
PMID 3040691
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The nucleotide sequence of a 1.4-kilobase-pair fragment containing the Salmonella typhimurium LT2 glgC gene coding for ADPglucose synthetase was determined. The glgC structural gene contains 1,293 base pairs, having a coding capacity of 431 amino acids. The amino acid sequence deduced from the nucleotide sequence shows that the molecular weight of ADPglucose synthetase is 45,580. Previous results of the total amino acid composition analysis and amino acid sequencing (M. Lehmann and J. Preiss, J. Bacteriol. 143:120-127, 1980) of the first 27 amino acids from the N terminus agree with that deduced from nucleotide sequencing data. Comparison of the Escherichia coli K-12 and S. typhimurium LT2 ADPglucose synthetase shows that there is 80% homology in their nucleotide sequence and 90% homology in their deduced amino acid sequence. Moreover, the amino acid residues of the putative allosteric sites for the physiological activator fructose bisphosphate (amino acid residue 39) and inhibitor AMP (amino acid residue 114) are identical between the two enzymes. There is also extensive homology in the putative ADPglucose binding site. In both E. coli K-12 and S. typhimurium LT2, the first base of the translational start ATG of glgA overlaps with the third base TAA stop codon of the glgC gene.

Citing Articles

Integrated Analysis of microRNA and RNA-Seq Reveals Phenolic Acid Secretion Metabolism in Continuous Cropping of .

Wang Y, Liu K, Zhou Y, Chen Y, Jin C, Hu Y Plants (Basel). 2023; 12(4).

PMID: 36840290 PMC: 9962977. DOI: 10.3390/plants12040943.


Physiological and transcriptomic analyses to reveal underlying phenolic acid action in consecutive monoculture problem of Polygonatum odoratum.

Ni X, Jin C, Liu A, Chen Y, Hu Y BMC Plant Biol. 2021; 21(1):362.

PMID: 34364388 PMC: 8349006. DOI: 10.1186/s12870-021-03135-x.


Cloning, sequencing, and overexpression in Escherichia coli of the alpha-D-glucose-1-phosphate cytidylyltransferase gene isolated from Yersinia pseudotuberculosis.

Thorson J, Kelly T, Liu H J Bacteriol. 1994; 176(7):1840-9.

PMID: 8144449 PMC: 205285. DOI: 10.1128/jb.176.7.1840-1849.1994.


Genetic map of Salmonella typhimurium, edition VIII.

Sanderson K, Hessel A, Rudd K Microbiol Rev. 1995; 59(2):241-303.

PMID: 7603411 PMC: 239362. DOI: 10.1128/mr.59.2.241-303.1995.


Linkage map of Salmonella typhimurium, edition VII.

Sanderson K, Roth J Microbiol Rev. 1988; 52(4):485-532.

PMID: 3070321 PMC: 373160. DOI: 10.1128/mr.52.4.485-532.1988.


References
1.
Shine J, Dalgarno L . The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974; 71(4):1342-6. PMC: 388224. DOI: 10.1073/pnas.71.4.1342. View

2.
Steiner K, Preiss J . Biosynthesis of bacterial glycogen: genetic and allosteric regulation of glycogen biosynthesis in Salmonella typhimurium LT-2. J Bacteriol. 1977; 129(1):246-53. PMC: 234921. DOI: 10.1128/jb.129.1.246-253.1977. View

3.
Haugen T, Ishaque A, Preiss J . Biosynthesis of bacterial glycogen. Characterization of the subunit structure of Escherichia coli B glucose-1-phosphate adenylyltransferase (EC 2.7.7.27). J Biol Chem. 1976; 251(24):7880-5. View

4.
SANGER F, Nicklen S, Coulson A . DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977; 74(12):5463-7. PMC: 431765. DOI: 10.1073/pnas.74.12.5463. View

5.
Parsons T, Preiss J . Biosynthesis of bacterial glycogen. Isolation and characterization of the pyridoxal-P allosteric activator site and the ADP-glucose-protected pyridoxal-P binding site of Escherichia coli B ADP-glucose synthase. J Biol Chem. 1978; 253(21):7638-45. View