» Articles » PMID: 30398688

Prediction of Major Regio-, Site-, and Diastereoisomers in Diels-Alder Reactions by Using Machine-Learning: The Importance of Physically Meaningful Descriptors

Overview
Specialty Chemistry
Date 2018 Nov 7
PMID 30398688
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Machine learning can predict the major regio-, site-, and diastereoselective outcomes of Diels-Alder reactions better than standard quantum-mechanical methods and with accuracies exceeding 90 % provided that i) the diene/dienophile substrates are represented by "physical-organic" descriptors reflecting the electronic and steric characteristics of their substituents and ii) the positions of such substituents relative to the reaction core are encoded ("vectorized") in an informative way.

Citing Articles

Computational tools for the prediction of site- and regioselectivity of organic reactions.

Sigmund L, Assante M, Johansson M, Norrby P, Jorner K, Kabeshov M Chem Sci. 2025; .

PMID: 40070469 PMC: 11891785. DOI: 10.1039/d5sc00541h.


Quantum mechanical and machine learning prediction of rotational energy barriers in halogenated aromatic alcohols.

Cerabona S, Brown G, Casabianca L J Mol Model. 2025; 31(3):93.

PMID: 39992318 PMC: 11850414. DOI: 10.1007/s00894-025-06321-y.


Machine learning-guided strategies for reaction conditions design and optimization.

Chen L, Li Y Beilstein J Org Chem. 2024; 20:2476-2492.

PMID: 39376489 PMC: 11457048. DOI: 10.3762/bjoc.20.212.


The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions.

Liu Z, Moroz Y, Isayev O Chem Sci. 2023; 14(39):10835-10846.

PMID: 37829036 PMC: 10566507. DOI: 10.1039/d3sc03902a.


Electrocatalyzed direct arene alkenylations without directing groups for selective late-stage drug diversification.

Lin Z, Dhawa U, Hou X, Surke M, Yuan B, Li S Nat Commun. 2023; 14(1):4224.

PMID: 37454167 PMC: 10349852. DOI: 10.1038/s41467-023-39747-0.