» Articles » PMID: 30393032

Non-coding RNA Expression, Function, and Variation During Drosophila Embryogenesis

Overview
Journal Curr Biol
Publisher Cell Press
Specialty Biology
Date 2018 Nov 6
PMID 30393032
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Long non-coding RNAs (lncRNAs) can often function in the regulation of gene expression during development; however, their generality as essential regulators in developmental processes and organismal phenotypes remains unclear. Here, we performed a tailored investigation of lncRNA expression and function during Drosophila embryogenesis, interrogating multiple stages, tissue specificity, nuclear localization, and genetic backgrounds. Our results almost double the number of annotated lncRNAs expressed at these embryonic stages. lncRNA levels are generally positively correlated with those of their neighboring genes, with little evidence of transcriptional interference. Using fluorescent in situ hybridization, we report the spatiotemporal expression of 15 new lncRNAs, revealing very dynamic tissue-specific patterns. Despite this, deletion of selected lncRNA genes had no obvious developmental defects or effects on viability under standard and stressed conditions. However, two lncRNA deletions resulted in modest expression changes of a small number of genes, suggesting that they fine-tune expression of non-essential genes. Several lncRNAs have strain-specific expression, indicating that they are not fixed within the population. This intra-species variation across genetic backgrounds may thereby be a useful tool to distinguish rapidly evolving lncRNAs with as yet non-essential roles.

Citing Articles

A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs.

Vanagas L, Cristaldi C, La Bella G, Ganuza A, Angel S, Alonso A Sci Rep. 2024; 14(1):27687.

PMID: 39533086 PMC: 11557611. DOI: 10.1038/s41598-024-79204-6.


Long non-coding RNAs involved in development and regeneration.

Camilleri-Robles C, Amador R, Tiebe M, Teleman A, Serras F, Guigo R NAR Genom Bioinform. 2024; 6(3):lqae091.

PMID: 39157585 PMC: 11327875. DOI: 10.1093/nargab/lqae091.


Characteristics and expression of lncRNA and transposable elements in aneuploidy.

Zhang S, Wang R, Zhu X, Zhang L, Liu X, Sun L iScience. 2023; 26(12):108494.

PMID: 38125016 PMC: 10730892. DOI: 10.1016/j.isci.2023.108494.


Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo.

de Almeida B, Schaub C, Pagani M, Secchia S, Furlong E, Stark A Nature. 2023; 626(7997):207-211.

PMID: 38086418 PMC: 10830412. DOI: 10.1038/s41586-023-06905-9.


LncRNA Functional Screening in Organismal Development.

Li Y, Zhai H, Tong L, Wang C, Xie Z, Zheng K Noncoding RNA. 2023; 9(4).

PMID: 37489456 PMC: 10366883. DOI: 10.3390/ncrna9040036.


References
1.
Schmitz S, Grote P, Herrmann B . Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016; 73(13):2491-509. PMC: 4894931. DOI: 10.1007/s00018-016-2174-5. View

2.
Gallo S, Gerrard D, Miner D, Simich M, Des Soye B, Bergman C . REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res. 2010; 39(Database issue):D118-23. PMC: 3013816. DOI: 10.1093/nar/gkq999. View

3.
Junion G, Spivakov M, Girardot C, Braun M, Gustafson E, Birney E . A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell. 2012; 148(3):473-86. DOI: 10.1016/j.cell.2012.01.030. View

4.
Scruggs B, Gilchrist D, Nechaev S, Muse G, Burkholder A, Fargo D . Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin. Mol Cell. 2015; 58(6):1101-12. PMC: 4475495. DOI: 10.1016/j.molcel.2015.04.006. View

5.
Graveley B, Brooks A, Carlson J, Duff M, Landolin J, Yang L . The developmental transcriptome of Drosophila melanogaster. Nature. 2010; 471(7339):473-9. PMC: 3075879. DOI: 10.1038/nature09715. View