» Articles » PMID: 30392048

Novel Electro-conductive Nanocomposites Based on Electrospun PLGA/CNT for Biomedical Applications

Overview
Publisher Springer
Date 2018 Nov 5
PMID 30392048
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Electro-conductive nanocomposites have several applications in biomedical field. Development of a biocompatible electro-conductive polymeric materials is therefore of prime importance. In this study, electro-conductive nanofibrous mats of PLGA/CNT were fabricated through different methods including blend electrospinning, simultaneous PLGA electrospinning and CNT electrospraying and ultrasound-induced adsorption of CNTs on the electrospun PLGA nanofibers. The morphology and diameter of fibers were characterized by SEM and TEM, showing the lowest average diameters of 477 ± 136 nm for PLGA/MWCNT blend nanocomposites. MWCNT-sprayed PLGA specimens showed significant lower water contact angle (83°), electrical resistance (3.0 × 10 Ω) and higher mechanical properties (UTS: 5.50 ± 0.46 MPa) compared to the untreated PLGA scaffolds. Also, results of PC12 cell study demonstrated highest viability percentage on the MWCNT-sprayed PLGA nanofibers. We propose that the conductive nanocomposites have capability to use as tool for the neural regeneration and biosensors.

Citing Articles

High-Strength and Rapidly Degradable Nanocomposite Yarns from Recycled Waste Poly(glycolic acid) (PGA).

Liu B, Wang S, Guo H, Yin H, Song Y, Gong M Polymers (Basel). 2025; 17(1.

PMID: 39795503 PMC: 11722973. DOI: 10.3390/polym17010100.


Multimaterial and multiscale scaffold for engineering enthesis organ.

Micalizzi S, Russo L, Giacomelli C, Montemurro F, De Maria C, Nencioni M Int J Bioprint. 2023; 9(5):763.

PMID: 37457943 PMC: 10339436. DOI: 10.18063/ijb.763.


Tissue-Engineered Nanomaterials Play Diverse Roles in Bone Injury Repair.

Wan T, Zhang M, Jiang H, Zhang Y, Zhang X, Wang Y Nanomaterials (Basel). 2023; 13(9).

PMID: 37176994 PMC: 10180507. DOI: 10.3390/nano13091449.


Improvement of sciatic nerve regeneration by multichannel nanofibrous membrane-embedded electro-conductive conduits functionalized with laminin.

Nazeri N, Derakhshan M, Mansoori K, Ghanbari H J Mater Sci Mater Med. 2022; 33(6):50.

PMID: 35639181 PMC: 9156509. DOI: 10.1007/s10856-022-06669-0.


Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds, and Pharmacological Agents.

Boroumand S, Haeri A, Nazeri N, Rabbani S Iran J Pharm Res. 2022; 20(4):467-496.

PMID: 35194460 PMC: 8842618. DOI: 10.22037/IJPR.2021.114730.15012.


References
1.
Scapin G, Bertalot T, Vicentini N, Gatti T, Tescari S, De Filippis V . Neuronal commitment of human circulating multipotent cells by carbon nanotube-polymer scaffolds and biomimetic peptides. Nanomedicine (Lond). 2016; 11(15):1929-46. DOI: 10.2217/nnm-2016-0150. View

2.
Shao S, Zhou S, Li L, Li J, Luo C, Wang J . Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials. 2011; 32(11):2821-33. DOI: 10.1016/j.biomaterials.2011.01.051. View

3.
Yang T, Wu Z, Wang P, Mu T, Qin H, Zhu Z . A large-inner-diameter multi-walled carbon nanotube-based dual-drug delivery system with pH-sensitive release properties. J Mater Sci Mater Med. 2017; 28(7):110. DOI: 10.1007/s10856-017-5920-9. View

4.
Lv Z, Liu Y, Miao H, Leng Z, Guo J, Liu J . Effects of multiwalled carbon nanotubes on electrospun poly(lactide-co-glycolide)-based nanocomposite scaffolds on neural cells proliferation. J Biomed Mater Res B Appl Biomater. 2016; 105(5):934-943. DOI: 10.1002/jbm.b.33620. View

5.
Zhu A, Liu H, Long F, Su E, Klibanov A . Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane. Appl Biochem Biotechnol. 2014; 175(2):666-76. DOI: 10.1007/s12010-014-1318-z. View