» Articles » PMID: 30381457

Universality of Jamming of Nonspherical Particles

Overview
Specialty Science
Date 2018 Nov 2
PMID 30381457
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Amorphous packings of nonspherical particles such as ellipsoids and spherocylinders are known to be hypostatic: The number of mechanical contacts between particles is smaller than the number of degrees of freedom, thus violating Maxwell's mechanical stability criterion. In this work, we propose a general theory of hypostatic amorphous packings and the associated jamming transition. First, we show that many systems fall into a same universality class. As an example, we explicitly map ellipsoids into a system of "breathing" particles. We show by using a marginal stability argument that in both cases jammed packings are hypostatic and that the critical exponents related to the contact number and the vibrational density of states are the same. Furthermore, we introduce a generalized perceptron model which can be solved analytically by the replica method. The analytical solution predicts critical exponents in the same hypostatic jamming universality class. Our analysis further reveals that the force and gap distributions of hypostatic jamming do not show power-law behavior, in marked contrast to the isostatic jamming of spherical particles. Finally, we confirm our theoretical predictions by numerical simulations.

Citing Articles

Rigidity transition of a highly compressible granular medium.

Poincloux S, Takeuchi K Proc Natl Acad Sci U S A. 2024; 121(49):e2408706121.

PMID: 39602252 PMC: 11626199. DOI: 10.1073/pnas.2408706121.


Experimental observations of marginal criticality in granular materials.

Wang Y, Shang J, Jin Y, Zhang J Proc Natl Acad Sci U S A. 2022; 119(22):e2204879119.

PMID: 35609194 PMC: 9295784. DOI: 10.1073/pnas.2204879119.


Transient learning degrees of freedom for introducing function in materials.

Hagh V, Nagel S, Liu A, Manning M, Corwin E Proc Natl Acad Sci U S A. 2022; 119(19):e2117622119.

PMID: 35512090 PMC: 9171605. DOI: 10.1073/pnas.2117622119.


The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions.

Wang D, Treado J, Boromand A, Norwick B, Murrell M, Shattuck M Soft Matter. 2021; 17(43):9901-9915.

PMID: 34697616 PMC: 9118367. DOI: 10.1039/d1sm01228b.


Pressure Dependent Shear Response of Jammed Packings of Frictionless Spherical Particles.

VanderWerf K, Boromand A, Shattuck M, OHern C Phys Rev Lett. 2020; 124(3):038004.

PMID: 32031840 PMC: 9128574. DOI: 10.1103/PhysRevLett.124.038004.


References
1.
Marschall T, Teitel S . Compression-driven jamming of athermal frictionless spherocylinders in two dimensions. Phys Rev E. 2018; 97(1-1):012905. DOI: 10.1103/PhysRevE.97.012905. View

2.
DeGiuli E, Lerner E, Brito C, Wyart M . Force distribution affects vibrational properties in hard-sphere glasses. Proc Natl Acad Sci U S A. 2014; 111(48):17054-9. PMC: 4260553. DOI: 10.1073/pnas.1415298111. View

3.
Kim J, Larsen R, Weitz D . Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc. 2006; 128(44):14374-7. DOI: 10.1021/ja065032m. View

4.
Lerner E, During G, Wyart M . A unified framework for non-brownian suspension flows and soft amorphous solids. Proc Natl Acad Sci U S A. 2012; 109(13):4798-803. PMC: 3324009. DOI: 10.1073/pnas.1120215109. View

5.
Williams S, Philipse A . Random packings of spheres and spherocylinders simulated by mechanical contraction. Phys Rev E Stat Nonlin Soft Matter Phys. 2003; 67(5 Pt 1):051301. DOI: 10.1103/PhysRevE.67.051301. View