» Articles » PMID: 30375583

Microfluidics-enabled Rapid Manufacturing of Hierarchical Silica-magnetic Microflower Toward Enhanced Circulating Tumor Cell Screening

Overview
Journal Biomater Sci
Date 2018 Oct 31
PMID 30375583
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The emergence of microfluidic techniques provides new opportunities for chemical synthesis and biomedical applications. Herein, we first develop a microfluidics-based flow and sustainable strategy to synthesize hierarchical silica-magnetic microflower with unique multilayered structure for the efficient capture of circulating tumor cells through our engineered microfluidic screening chip. The production of microflower materials can be realized within 94 milliseconds and a yield of nearly 5 grams per hour can be achieved. The enhanced bioaccessibility of such a multilayered microflower towards cancer cells (MCF-7 and MDA-MB-231) is demonstrated, and the cancer cell capture efficiency of this hierarchical immunomagnetic system in clinical blood samples is significantly increased compared with a standard CellSearch™ assay. These findings bring new insights for engineering functional micro-/nanomaterials in liquid biopsy.

Citing Articles

Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy.

Yun Y, Kim S, Lee S, Cho H, Choi J Nano Converg. 2024; 11(1):56.

PMID: 39671082 PMC: 11645384. DOI: 10.1186/s40580-024-00466-x.


Review on Microreactors for Photo-Electrocatalysis Artificial Photosynthesis Regeneration of Coenzymes.

Liu H, Sun R, Yang Y, Zhang C, Zhao G, Zhang K Micromachines (Basel). 2024; 15(6).

PMID: 38930759 PMC: 11205774. DOI: 10.3390/mi15060789.


Rational design of on-chip gold plasmonic nanoparticles towards ctDNA screening.

Tadimety A, Wu Z, Molinski J, Beckerman R, Jin C, Zhang L Sci Rep. 2021; 11(1):14185.

PMID: 34244556 PMC: 8270934. DOI: 10.1038/s41598-021-93207-7.


Detection of circulating tumor cells: Advances and critical concerns.

Hu X, Zang X, Lv Y Oncol Lett. 2021; 21(5):422.

PMID: 33850563 PMC: 8025150. DOI: 10.3892/ol.2021.12683.


Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology.

Shen J, Shafiq M, Ma M, Chen H Nanomaterials (Basel). 2020; 10(6).

PMID: 32560284 PMC: 7353232. DOI: 10.3390/nano10061177.


References
1.
Hoshino K, Chen P, Huang Y, Zhang X . Computational analysis of microfluidic immunomagnetic rare cell separation from a particulate blood flow. Anal Chem. 2012; 84(10):4292-9. PMC: 3359653. DOI: 10.1021/ac2032386. View

2.
Hao N, Nie Y, Tadimety A, Closson A, Zhang J . Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials. Mater Res Lett. 2019; 5(8):584-590. PMC: 6405212. DOI: 10.1080/21663831.2017.1376720. View

3.
Park J, Lee J, Lee J, Jeong H, Oh J, Kim Y . Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal Chem. 2012; 84(17):7400-7. DOI: 10.1021/ac3011704. View

4.
Valencia P, Farokhzad O, Karnik R, Langer R . Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012; 7(10):623-9. PMC: 3654404. DOI: 10.1038/nnano.2012.168. View

5.
Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T . Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem. 2012; 84(18):7954-62. PMC: 3445767. DOI: 10.1021/ac301723s. View