Sun X, Yegambaram M, Lu Q, Garcia Flores A, Pokharel M, Soto J
Redox Biol. 2025; 81:103529.
PMID: 39978304
PMC: 11889635.
DOI: 10.1016/j.redox.2025.103529.
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R
Probiotics Antimicrob Proteins. 2025; .
PMID: 39890752
DOI: 10.1007/s12602-025-10471-z.
Gorini F, Tonacci A
Antioxidants (Basel). 2024; 13(10).
PMID: 39456495
PMC: 11505632.
DOI: 10.3390/antiox13101242.
Song S, Wang L, Hou L, Liu J
Nat Commun. 2024; 15(1):5769.
PMID: 38982044
PMC: 11233643.
DOI: 10.1038/s41467-024-49924-4.
Gorini F, Tonacci A
Antioxidants (Basel). 2023; 12(10).
PMID: 37891977
PMC: 10604861.
DOI: 10.3390/antiox12101898.
The role and mechanism of NADPH oxidase in the development and progression of thyroid carcinoma.
Dang H, Sheng J, Tang P, Peng X, Zhang R, Zhao X
Am J Cancer Res. 2023; 13(9):4366-4375.
PMID: 37818067
PMC: 10560939.
Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer.
Zhang L, Li Z, Zhang M, Zou H, Bai Y, Liu Y
Med Oncol. 2023; 40(9):258.
PMID: 37524925
DOI: 10.1007/s12032-023-02098-3.
Lenvatinib resistance mechanism and potential ways to conquer.
Bo W, Chen Y
Front Pharmacol. 2023; 14:1153991.
PMID: 37153782
PMC: 10157404.
DOI: 10.3389/fphar.2023.1153991.
Mitochondrial Ribosomal Protein L14 Promotes Cell Growth and Invasion by Modulating Reactive Oxygen Species in Thyroid Cancer.
Kim H, Nguyen Q, Jung S, Lim M, Oh C, Piao Y
Clin Exp Otorhinolaryngol. 2023; 16(2):184-197.
PMID: 36822197
PMC: 10208851.
DOI: 10.21053/ceo.2022.01760.
NOX Dependent ROS Generation and Cell Metabolism.
Cimmino T, Ammendola R, Cattaneo F, Esposito G
Int J Mol Sci. 2023; 24(3).
PMID: 36768405
PMC: 9916913.
DOI: 10.3390/ijms24032086.
Overview of Cancer Metabolism and Signaling Transduction.
Chae H, Hong S
Int J Mol Sci. 2023; 24(1).
PMID: 36613455
PMC: 9819818.
DOI: 10.3390/ijms24010012.
NOX as a Therapeutic Target in Liver Disease.
Matuz-Mares D, Vazquez-Meza H, Vilchis-Landeros M
Antioxidants (Basel). 2022; 11(10).
PMID: 36290761
PMC: 9598239.
DOI: 10.3390/antiox11102038.
Redox Homeostasis in Thyroid Cancer: Implications in Na/I Symporter (NIS) Regulation.
Cazarin J, Dupuy C, Pires de Carvalho D
Int J Mol Sci. 2022; 23(11).
PMID: 35682803
PMC: 9181215.
DOI: 10.3390/ijms23116129.
The Cross-Talk between Polyphenols and the Target Enzymes Related to Oxidative Stress-Induced Thyroid Cancer.
Heydarzadeh S, Kheradmand Kia S, Zarkesh M, Pakizehkar S, Hosseinzadeh S, Hedayati M
Oxid Med Cell Longev. 2022; 2022:2724324.
PMID: 35571253
PMC: 9098327.
DOI: 10.1155/2022/2724324.
Targeting NOX4 disrupts the resistance of papillary thyroid carcinoma to chemotherapeutic drugs and lenvatinib.
Tang P, Sheng J, Peng X, Zhang R, Xu T, Hu J
Cell Death Discov. 2022; 8(1):177.
PMID: 35396551
PMC: 8990679.
DOI: 10.1038/s41420-022-00994-7.
NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation.
Szanto I
Int J Mol Sci. 2022; 23(5).
PMID: 35269843
PMC: 8910662.
DOI: 10.3390/ijms23052702.
Gene Editing with CRISPR/Cas Methodology and Thyroid Cancer: Where Are We?.
Fuziwara C, de Mello D, Kimura E
Cancers (Basel). 2022; 14(3).
PMID: 35159110
PMC: 8834610.
DOI: 10.3390/cancers14030844.
The Role of Altered Mitochondrial Metabolism in Thyroid Cancer Development and Mitochondria-Targeted Thyroid Cancer Treatment.
Dabravolski S, Nikiforov N, Zhuravlev A, Orekhov N, Mikhaleva L, Orekhov A
Int J Mol Sci. 2022; 23(1).
PMID: 35008887
PMC: 8745127.
DOI: 10.3390/ijms23010460.
NOX4: a potential therapeutic target for pancreatic cancer and its mechanism.
Bi Y, Lei X, Chai N, Linghu E
J Transl Med. 2021; 19(1):515.
PMID: 34930338
PMC: 8686284.
DOI: 10.1186/s12967-021-03182-w.
A flow-cytometry-based protocol for detection of mitochondrial ROS production under hypoxia.
Yang Y, Zhang G, Yang T, Gan J, Xu L, Yang H
STAR Protoc. 2021; 2(2):100466.
PMID: 33997804
PMC: 8086139.
DOI: 10.1016/j.xpro.2021.100466.