6.
Phenrat T, Saleh N, Sirk K, Tilton R, Lowry G
. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007; 41(1):284-90.
DOI: 10.1021/es061349a.
View
7.
Lipczynska-Kochany E, Kochany J
. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere. 2008; 73(5):745-50.
DOI: 10.1016/j.chemosphere.2008.06.028.
View
8.
Liu S, Cheng S, Feng L, Wang X, Chen Z
. Effect of alkali cations on heterogeneous photo-Fenton process mediated by Prussian blue colloids. J Hazard Mater. 2010; 182(1-3):665-71.
DOI: 10.1016/j.jhazmat.2010.06.083.
View
9.
Mueller N, Braun J, Bruns J, cernik M, Rissing P, Rickerby D
. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res Int. 2011; 19(2):550-8.
DOI: 10.1007/s11356-011-0576-3.
View
10.
Bennedsen L, Muff J, Sogaard E
. Influence of chloride and carbonates on the reactivity of activated persulfate. Chemosphere. 2012; 86(11):1092-7.
DOI: 10.1016/j.chemosphere.2011.12.011.
View
11.
Schwierz N, Horinek D, Netz R
. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces. Langmuir. 2013; 29(8):2602-14.
DOI: 10.1021/la303924e.
View
12.
Fu F, Dionysiou D, Liu H
. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater. 2014; 267:194-205.
DOI: 10.1016/j.jhazmat.2013.12.062.
View
13.
Zang X, Gu X, Lu S, Qiu Z, Sui Q, Lin K
. Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system. Environ Technol. 2014; 35(5-8):791-8.
DOI: 10.1080/09593330.2013.852592.
View
14.
Lei Y, Chen C, Tu Y, Huang Y, Zhang H
. Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism, Stability, and Effects of pH and Bicarbonate Ions. Environ Sci Technol. 2015; 49(11):6838-45.
DOI: 10.1021/acs.est.5b00623.
View
15.
Ahmad A, Gu X, Li L, Lv S, Xu Y, Guo X
. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. Environ Sci Pollut Res Int. 2015; 22(22):17876-85.
DOI: 10.1007/s11356-015-5034-1.
View
16.
Miao Z, Gu X, Lu S, Brusseau M, Yan N, Qiu Z
. Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system. J Hazard Mater. 2015; 300:530-537.
PMC: 4658213.
DOI: 10.1016/j.jhazmat.2015.07.047.
View
17.
Miao Z, Gu X, Lu S, Brusseau M, Zhang X, Fu X
. Enhancement effects of chelating agents on the degradation of tetrachloroethene in Fe(III) catalyzed percarbonate system. Chem Eng J. 2015; 281:286-294.
PMC: 4634672.
DOI: 10.1016/j.cej.2015.06.076.
View
18.
Danish M, Gu X, Lu S, Naqvi M
. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ Sci Pollut Res Int. 2016; 23(13):13298-307.
DOI: 10.1007/s11356-016-6488-5.
View
19.
Li H, Qiu Y, Wang X, Yang J, Yu Y, Chen Y
. Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions. Chemosphere. 2016; 169:534-541.
DOI: 10.1016/j.chemosphere.2016.11.117.
View
20.
Fu X, Brusseau M, Zang X, Lu S, Zhang X, Farooq U
. Enhanced effect of HAH on citric acid-chelated Fe(II)-catalyzed percarbonate for trichloroethene degradation. Environ Sci Pollut Res Int. 2017; 24(31):24318-24326.
PMC: 5772937.
DOI: 10.1007/s11356-017-0070-7.
View