» Articles » PMID: 30345566

Oriented Quasi-2D Perovskites for High Performance Optoelectronic Devices

Abstract

Quasi-2D layered organometal halide perovskites have recently emerged as promising candidates for solar cells, because of their intrinsic stability compared to 3D analogs. However, relatively low power conversion efficiency (PCE) limits the application of 2D layered perovskites in photovoltaics, due to large energy band gap, high exciton binding energy, and poor interlayer charge transport. Here, efficient and water-stable quasi-2D perovskite solar cells with a peak PCE of 18.20% by using 3-bromobenzylammonium iodide are demonstrated. The unencapsulated devices sustain over 82% of their initial efficiency after 2400 h under relative humidity of ≈40%, and show almost unchanged photovoltaic parameters after immersion into water for 60 s. The robust performance of perovskite solar cells results from the quasi-2D perovskite films with hydrophobic nature and a high degree of electronic order and high crystallinity, which consists of both ordered large-bandgap perovskites with the vertical growth in the bottom region and oriented small-bandgap components in the top region. Moreover, due to the suppressed nonradiative recombination, the unencapsulated photovoltaic devices can work well as light-emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of ≈96 h at a high current density of 200 mA cm in air.

Citing Articles

Structural Mechanisms of Quasi-2D Perovskites for Next-Generation Photovoltaics.

Lee H, Moon T, Lee Y, Kim J Nanomicro Lett. 2025; 17(1):139.

PMID: 39920413 PMC: 11806192. DOI: 10.1007/s40820-024-01609-9.


Dimensional engineering of interlayer for efficient large-area perovskite solar cells with high stability under ISOS-L-3 aging test.

Yun Y, Chang Q, Yan J, Tian Y, Jiang S, Wei W Sci Adv. 2025; 11(3):eadp3112.

PMID: 39813355 PMC: 11734737. DOI: 10.1126/sciadv.adp3112.


Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications.

Kostopoulou A, Konidakis I, Stratakis E Nanophotonics. 2024; 12(9):1643-1710.

PMID: 39634119 PMC: 11501535. DOI: 10.1515/nanoph-2022-0797.


Vertically oriented low-dimensional perovskites for high-efficiency wide band gap perovskite solar cells.

Zanetta A, Larini V, Vikram , Toniolo F, Vishal B, Elmestekawy K Nat Commun. 2024; 15(1):9069.

PMID: 39433561 PMC: 11494202. DOI: 10.1038/s41467-024-53339-6.


Molecular Structure Tailoring of Organic Spacers for High-Performance Ruddlesden-Popper Perovskite Solar Cells.

Liu P, Li X, Cai T, Xing W, Yang N, Arandiyan H Nanomicro Lett. 2024; 17(1):35.

PMID: 39387997 PMC: 11469732. DOI: 10.1007/s40820-024-01500-7.