» Articles » PMID: 30333680

High Sulfur Content Polymers: The Effect of Crosslinker Structure on Inverse Vulcanization

Overview
Specialty Chemistry
Date 2018 Oct 19
PMID 30333680
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The discovery of inverse vulcanization has allowed polymers to be made using elemental sulfur as the major component. However, until now, there has been little discussion of why seemingly similar crosslinkers result in polymers with radically different properties. Combining synthesis, spectroscopy, and modeling, this study reveals the structure-property relationships of sulfur polymers and reports a new system using 5-ethylidene-2-norbornene as a crosslinker that can stabilize up to 90 wt % of elemental sulfur.

Citing Articles

Sulphur Copolymers with Pyrrole Compounds as Crosslinking Agents of Elastomer Composites for High-Performance Tyres.

Naddeo S, Barbera V, Galimberti M Polymers (Basel). 2024; 16(19).

PMID: 39408512 PMC: 11478510. DOI: 10.3390/polym16192802.


The Influence of the Comonomer Ratio and Reaction Temperature on the Mechanical, Thermal, and Morphological Properties of Lignin Oil-Sulfur Composites.

Tisdale K, Kapuge Dona N, Smith R Molecules. 2024; 29(17).

PMID: 39275057 PMC: 11397338. DOI: 10.3390/molecules29174209.


Structural evolution during inverse vulcanization.

Zheng B, Zhong L, Wang X, Lin P, Yang Z, Bai T Nat Commun. 2024; 15(1):5507.

PMID: 38951493 PMC: 11217493. DOI: 10.1038/s41467-024-49374-y.


Unraveling the rheology of inverse vulcanized polymers.

Bischoff D, Lee T, Kang K, Molineux J, ONeil Parker Jr W, Pyun J Nat Commun. 2023; 14(1):7553.

PMID: 37985754 PMC: 10662295. DOI: 10.1038/s41467-023-43117-1.


2,5-Diisopropenylthiophene by Suzuki-Miyaura cross-coupling reaction and its exploitation in inverse vulcanization: a case study.

Tavella C, Luciano G, Lova P, Patrini M, DArrigo C, Comoretto D RSC Adv. 2022; 12(15):8924-8935.

PMID: 35424896 PMC: 8985149. DOI: 10.1039/d2ra00654e.


References
1.
Illa O, Namutebi M, Saha C, Ostovar M, Chen C, Haddow M . Practical and highly selective sulfur ylide-mediated asymmetric epoxidations and aziridinations using a cheap and readily available chiral sulfide: extensive studies to map out scope, limitations, and rationalization of diastereo- and.... J Am Chem Soc. 2013; 135(32):11951-66. DOI: 10.1021/ja405073w. View

2.
Lundquist N, Worthington M, Adamson N, Gibson C, Johnston M, Ellis A . Polysulfides made from re-purposed waste are sustainable materials for removing iron from water. RSC Adv. 2022; 8(3):1232-1236. PMC: 9077003. DOI: 10.1039/c7ra11999b. View

3.
Crockett M, Evans A, Worthington M, Albuquerque I, Slattery A, Gibson C . Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil. Angew Chem Int Ed Engl. 2015; 55(5):1714-8. PMC: 4755153. DOI: 10.1002/anie.201508708. View

4.
Griebel J, Nguyen N, Namnabat S, Anderson L, Glass R, Norwood R . Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials. ACS Macro Lett. 2022; 4(9):862-866. DOI: 10.1021/acsmacrolett.5b00502. View

5.
Chung W, Griebel J, Kim E, Yoon H, Simmonds A, Ji H . The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem. 2013; 5(6):518-24. DOI: 10.1038/nchem.1624. View