» Articles » PMID: 30323281

Characterization of a Long Overlooked Copper Protein from Methane- and Ammonia-oxidizing Bacteria

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Oct 17
PMID 30323281
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Methane-oxidizing microbes catalyze the oxidation of the greenhouse gas methane using the copper-dependent enzyme particulate methane monooxygenase (pMMO). Isolated pMMO exhibits lower activity than whole cells, however, suggesting that additional components may be required. A pMMO homolog, ammonia monooxygenase (AMO), converts ammonia to hydroxylamine in ammonia-oxidizing bacteria (AOB) which produce another potent greenhouse gas, nitrous oxide. Here we show that PmoD, a protein encoded within many pmo operons that is homologous to the AmoD proteins encoded within AOB amo operons, forms a copper center that exhibits the features of a well-defined Cu site using a previously unobserved ligand set derived from a cupredoxin homodimer. PmoD is critical for copper-dependent growth on methane, and genetic analyses strongly support a role directly related to pMMO and AMO. These findings identify a copper-binding protein that may represent a missing link in the function of enzymes critical to the global carbon and nitrogen cycles.

Citing Articles

Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation and metal homeostasis.

Verdejo-Torres O, Klein D, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A PLoS Genet. 2024; 20(12):e1011495.

PMID: 39637238 PMC: 11671023. DOI: 10.1371/journal.pgen.1011495.


Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation.

Verdejo-Torres O, Klein D, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A bioRxiv. 2024; .

PMID: 38746126 PMC: 11092763. DOI: 10.1101/2024.05.03.592485.


Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases.

Tucci F, Rosenzweig A Chem Rev. 2024; 124(3):1288-1320.

PMID: 38305159 PMC: 10923174. DOI: 10.1021/acs.chemrev.3c00727.


Beyond the coupled distortion model: structural analysis of the single domain cupredoxin AcoP, a green mononuclear copper centre with original features.

Roger M, Leone P, Blackburn N, Horrell S, Chicano T, Biaso F Dalton Trans. 2024; 53(4):1794-1808.

PMID: 38170898 PMC: 10804444. DOI: 10.1039/d3dt03372d.


Understanding ATP Binding to DosS Catalytic Domain with a Short ATP-Lid.

Larson G, Windsor P, Smithwick E, Shi K, Aihara H, Damodaran A Biochemistry. 2023; 62(22):3283-3292.

PMID: 37905955 PMC: 11152246. DOI: 10.1021/acs.biochem.3c00306.


References
1.
Kenney G, Sadek M, Rosenzweig A . Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics. 2016; 8(9):931-40. PMC: 6195801. DOI: 10.1039/c5mt00289c. View

2.
Lawton T, Kenney G, Hurley J, Rosenzweig A . The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins. Biochemistry. 2016; 55(15):2278-90. PMC: 5260838. DOI: 10.1021/acs.biochem.6b00175. View

3.
Eisen M, Spellman P, Brown P, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998; 95(25):14863-8. PMC: 24541. DOI: 10.1073/pnas.95.25.14863. View

4.
Brown K, Tegoni M, Prudencio M, Pereira A, BESSON S, Moura J . A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol. 2000; 7(3):191-5. DOI: 10.1038/73288. View

5.
Gu W, Semrau J . Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol. 2017; 101(23-24):8499-8516. DOI: 10.1007/s00253-017-8572-2. View