Peng T, Lynch J, Yang J, Wang Y, Lee X, Conran B
ACS Nano. 2025; 19(8):8152-8161.
PMID: 39981960
PMC: 11887482.
DOI: 10.1021/acsnano.4c16649.
Odewale E, Avramenko A, Rury A
Nanophotonics. 2024; 13(14):2695-2706.
PMID: 39678670
PMC: 11636455.
DOI: 10.1515/nanoph-2023-0748.
Schwennicke K, Giebink N, Yuen-Zhou J
Nanophotonics. 2024; 13(14):2469-2478.
PMID: 39678667
PMC: 11636428.
DOI: 10.1515/nanoph-2024-0049.
Wu A, Cerrillo J, Cao J
Nanophotonics. 2024; 13(14):2575-2590.
PMID: 39678665
PMC: 11636469.
DOI: 10.1515/nanoph-2023-0831.
Chen L, Fidler A, McKillop A, Weichman M
Nanophotonics. 2024; 13(14):2591-2599.
PMID: 39678655
PMC: 11635944.
DOI: 10.1515/nanoph-2023-0747.
Strong Coupling of Organic Molecules 2023 (SCOM23).
Yuen-Zhou J, Xiong W
Nanophotonics. 2024; 13(14):2437-2441.
PMID: 39678653
PMC: 11636515.
DOI: 10.1515/nanoph-2024-0260.
Subradiant plasmonic cavities make bright polariton states dark.
Yim J, Brawley Z, Sheldon M
Nanophotonics. 2024; 13(11):2035-2045.
PMID: 39635085
PMC: 11501913.
DOI: 10.1515/nanoph-2024-0058.
The role of IR inactive mode in W(CO) polariton relaxation process.
Hirschmann O, Bhakta H, Xiong W
Nanophotonics. 2024; 13(11):2029-2034.
PMID: 39635079
PMC: 11501596.
DOI: 10.1515/nanoph-2023-0589.
Toward Polaritonic Molecular Orbitals for Large Molecular Systems.
El Moutaoukal Y, Riso R, Castagnola M, Koch H
J Chem Theory Comput. 2024; 20(20):8911-8920.
PMID: 39348190
PMC: 11500296.
DOI: 10.1021/acs.jctc.4c00808.
Nanotechnology-Enabled PCR with Tunable Energy Dynamics.
Zhao X, Peng H, Hu J, Wang L, Zhang F
JACS Au. 2024; 4(9):3370-3382.
PMID: 39328766
PMC: 11423310.
DOI: 10.1021/jacsau.4c00570.
Cavity Controlled Upconversion in CdSe Nanoplatelet Polaritons.
Amin M, Koessler E, Morshed O, Awan F, Cogan N, Collison R
ACS Nano. 2024; 18(32):21388-21398.
PMID: 39078943
PMC: 11328175.
DOI: 10.1021/acsnano.4c05871.
Extending the Tavis-Cummings model for molecular ensembles-Exploring the effects of dipole self-energies and static dipole moments.
Borges L, Schnappinger T, Kowalewski M
J Chem Phys. 2024; 161(4).
PMID: 39072423
PMC: 7616353.
DOI: 10.1063/5.0214362.
Do Molecular Geometries Change Under Vibrational Strong Coupling?.
Schnappinger T, Kowalewski M
J Phys Chem Lett. 2024; 15(30):7700-7707.
PMID: 39041716
PMC: 11299175.
DOI: 10.1021/acs.jpclett.4c01810.
Spatially Resolved Near Field Spectroscopy of Vibrational Polaritons at the Small N Limit.
Hirschmann O, Bhakta H, Kort-Kamp W, Jones A, Xiong W
ACS Photonics. 2024; 11(7):2650-2658.
PMID: 39036063
PMC: 11258779.
DOI: 10.1021/acsphotonics.4c00345.
XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment-Polymer Antenna Complexes Using a Gas Cluster Ion Source.
Csanyi E, Hammond D, Bower B, Johnson E, Lishchuk A, Armes S
Langmuir. 2024; 40(28):14527-14539.
PMID: 38954522
PMC: 11256746.
DOI: 10.1021/acs.langmuir.4c01361.
Origin of Exciton-Polariton Interactions and Decoupled Dark States Dynamics in 2D Hybrid Perovskite Quantum Wells.
Fieramosca A, Mastria R, Dini K, Dominici L, Polimeno L, Pugliese M
Nano Lett. 2024; 24(27):8240-8247.
PMID: 38925628
PMC: 11247545.
DOI: 10.1021/acs.nanolett.4c00418.
Assessing the Determinants of Cavity Polariton Relaxation Using Angle-Resolved Photoluminescence Excitation Spectroscopy.
Odewale E, Wanasinghe S, Rury A
J Phys Chem Lett. 2024; 15(21):5705-5713.
PMID: 38768370
PMC: 11146005.
DOI: 10.1021/acs.jpclett.4c01120.
A 2D chiral microcavity based on apparent circular dichroism.
Chen T, Salij A, Parrish K, Rasch J, Zinna F, Brown P
Nat Commun. 2024; 15(1):3072.
PMID: 38594293
PMC: 11004002.
DOI: 10.1038/s41467-024-47411-4.
Theoretical formulation of chemical equilibrium under vibrational strong coupling.
Sun K, Ribeiro R
Nat Commun. 2024; 15(1):2405.
PMID: 38493189
PMC: 10944518.
DOI: 10.1038/s41467-024-46442-1.
Molecular Polaritons for Chemistry, Photonics and Quantum Technologies.
Xiang B, Xiong W
Chem Rev. 2024; 124(5):2512-2552.
PMID: 38416701
PMC: 10941193.
DOI: 10.1021/acs.chemrev.3c00662.