» Articles » PMID: 30310561

Polariton Chemistry: Controlling Molecular Dynamics with Optical Cavities

Overview
Journal Chem Sci
Specialty Chemistry
Date 2018 Oct 13
PMID 30310561
Citations 105
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular polaritons are the optical excitations which emerge when molecular transitions interact strongly with confined electromagnetic fields. Increasing interest in the hybrid molecular-photonic materials that host these excitations stems from recent observations of their novel and tunable chemistry. Some of the remarkable functionalities exhibited by polaritons include the ability to induce long-range excitation energy transfer, enhance charge conductivity, and inhibit or accelerate chemical reactions. In this review, we explain the effective theories of molecular polaritons which form a basis for the interpretation and guidance of experiments at the strong coupling limit. The theoretical discussion is illustrated with the analysis of innovative applications of strongly coupled molecular-photonic systems to chemical phenomena of fundamental importance to future technologies.

Citing Articles

Polariton-Mediated Ultrafast Nonlinear Energy Transfer in a van der Waals Superlattice.

Peng T, Lynch J, Yang J, Wang Y, Lee X, Conran B ACS Nano. 2025; 19(8):8152-8161.

PMID: 39981960 PMC: 11887482. DOI: 10.1021/acsnano.4c16649.


Deciphering between enhanced light emission and absorption in multi-mode porphyrin cavity polariton samples.

Odewale E, Avramenko A, Rury A Nanophotonics. 2024; 13(14):2695-2706.

PMID: 39678670 PMC: 11636455. DOI: 10.1515/nanoph-2023-0748.


Extracting accurate light-matter couplings from disordered polaritons.

Schwennicke K, Giebink N, Yuen-Zhou J Nanophotonics. 2024; 13(14):2469-2478.

PMID: 39678667 PMC: 11636428. DOI: 10.1515/nanoph-2024-0049.


Extracting kinetic information from short-time trajectories: relaxation and disorder of lossy cavity polaritons.

Wu A, Cerrillo J, Cao J Nanophotonics. 2024; 13(14):2575-2590.

PMID: 39678665 PMC: 11636469. DOI: 10.1515/nanoph-2023-0831.


Exploring the impact of vibrational cavity coupling strength on ultrafast CN + -CH reaction dynamics.

Chen L, Fidler A, McKillop A, Weichman M Nanophotonics. 2024; 13(14):2591-2599.

PMID: 39678655 PMC: 11635944. DOI: 10.1515/nanoph-2023-0747.


References
1.
Subotnik J, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N . Understanding the Surface Hopping View of Electronic Transitions and Decoherence. Annu Rev Phys Chem. 2016; 67:387-417. DOI: 10.1146/annurev-physchem-040215-112245. View

2.
De Liberato S . Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys Rev Lett. 2014; 112(1):016401. DOI: 10.1103/PhysRevLett.112.016401. View

3.
Gonzalez-Ballestero C, Feist J, Gonzalo Badia E, Moreno E, Garcia-Vidal F . Uncoupled Dark States Can Inherit Polaritonic Properties. Phys Rev Lett. 2016; 117(15):156402. DOI: 10.1103/PhysRevLett.117.156402. View

4.
Birnbaum K, Boca A, Miller R, Boozer A, Northup T, Kimble H . Photon blockade in an optical cavity with one trapped atom. Nature. 2005; 436(7047):87-90. DOI: 10.1038/nature03804. View

5.
Herrera F, Spano F . Cavity-Controlled Chemistry in Molecular Ensembles. Phys Rev Lett. 2016; 116(23):238301. DOI: 10.1103/PhysRevLett.116.238301. View