» Articles » PMID: 30293780

Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2018 Oct 9
PMID 30293780
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.

Citing Articles

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Sasaki M, Kobayashi T Nucleic Acids Res. 2025; 53(3).

PMID: 39876709 PMC: 11760980. DOI: 10.1093/nar/gkaf014.


Unveiling the mysteries of extrachromosomal circular DNA: from generation to clinical relevance in human cancers and health.

Wang Z, Yu J, Zhu W, Hong X, Xu Z, Mao S Mol Cancer. 2024; 23(1):276.

PMID: 39707444 PMC: 11660679. DOI: 10.1186/s12943-024-02187-5.


Bioinformatics advances in eccDNA identification and analysis.

Li F, Ming W, Lu W, Wang Y, Dong X, Bai Y Oncogene. 2024; 43(41):3021-3036.

PMID: 39209966 DOI: 10.1038/s41388-024-03138-6.


Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies.

Tsiakanikas P, Athanasopoulou K, Darioti I, Agiassoti V, Theocharis S, Scorilas A Life (Basel). 2024; 14(8).

PMID: 39202666 PMC: 11355349. DOI: 10.3390/life14080922.


Induction of homologous recombination by site-specific replication stress.

Triplett M, Johnson M, Symington L DNA Repair (Amst). 2024; 142:103753.

PMID: 39190984 PMC: 11425181. DOI: 10.1016/j.dnarep.2024.103753.


References
1.
Shoura M, Gabdank I, Hansen L, Merker J, Gotlib J, Levene S . Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in and . G3 (Bethesda). 2017; 7(10):3295-3303. PMC: 5633380. DOI: 10.1534/g3.117.300141. View

2.
Kobayashi T, Ganley A . Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science. 2005; 309(5740):1581-4. DOI: 10.1126/science.1116102. View

3.
Kobayashi T, Heck D, Nomura M, Horiuchi T . Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 1998; 12(24):3821-30. PMC: 317266. DOI: 10.1101/gad.12.24.3821. View

4.
Hallgren J, Pietrzak M, Rempala G, Nelson P, Hetman M . Neurodegeneration-associated instability of ribosomal DNA. Biochim Biophys Acta. 2014; 1842(6):860-8. PMC: 3985612. DOI: 10.1016/j.bbadis.2013.12.012. View

5.
Cohen S, Menut S, Mechali M . Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol Cell Biol. 1999; 19(10):6682-9. PMC: 84653. DOI: 10.1128/MCB.19.10.6682. View