» Articles » PMID: 30288249

Between Single Ion Magnets and Macromolecules: a Polymer/transition Metal-based Semi-solid Solution

Overview
Journal Chem Sci
Specialty Chemistry
Date 2018 Oct 6
PMID 30288249
Authors
Affiliations
Soon will be listed here.
Abstract

The creation of functional magnetic materials for application in high-density memory storage or in the new field of molecular spintronics is a matter of widespread interest among the material research community. Herein, we describe a new approach that combines the qualities of single ion magnets, displaying slow magnetic relaxations, and the merits of polymers, being easy to process and widely used to produce thin films. Basing the idea on cobalt(ii) ions and pyridine-based single ion magnets, a new macromolecular magnetic material was obtained - a polymeric matrix of poly(4-vinylpyridine) (P4VP) cross-linked by a cobalt(ii) salt bound within it, effectively forming a network of single ion magnets, with field-induced magnetic relaxations preserved in both bulk and thin film forms. The binding of cobalt is confirmed by a series of methods, like secondary ion mass spectroscopy or high-resolution X-ray photoelectron spectroscopy. The magnetic relaxation times, up to 5 × 10 s, are controllable simply by dilution, making this new material a semi-solid solution. By this approach, a new path is formed to connect molecular magnetism and polymer science, showing that the easy polymer processing can be used in forming self-organizing functional magnetic thin films.

References
1.
Park B, Han M . Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process. Opt Express. 2009; 17(16):13830-40. DOI: 10.1364/oe.17.013830. View

2.
Campbell V, Tonelli M, Cimatti I, Moussy J, Tortech L, Dappe Y . Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices. Nat Commun. 2016; 7:13646. PMC: 5476799. DOI: 10.1038/ncomms13646. View

3.
Zhang J, Yan Y, Chance M, Chen J, Hayat J, Ma S . Charged metallopolymers as universal precursors for versatile cobalt materials. Angew Chem Int Ed Engl. 2013; 52(50):13387-91. DOI: 10.1002/anie.201306432. View

4.
Chorazy S, Stanek J, Nogas W, Majcher A, Rams M, Koziel M . Tuning of Charge Transfer Assisted Phase Transition and Slow Magnetic Relaxation Functionalities in {Fe(9-x)Co(x)[W(CN)8]6} (x = 0-9) Molecular Solid Solution. J Am Chem Soc. 2016; 138(5):1635-46. DOI: 10.1021/jacs.5b11924. View

5.
Barth J, Costantini G, Kern K . Engineering atomic and molecular nanostructures at surfaces. Nature. 2005; 437(7059):671-9. DOI: 10.1038/nature04166. View