» Articles » PMID: 30283648

The Genomic Basis of Cichlid Fish Adaptation Within the Deepwater "twilight Zone" of Lake Malawi

Overview
Journal Evol Lett
Specialty Biology
Date 2018 Oct 5
PMID 30283648
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Deepwater environments are characterized by low levels of available light at narrow spectra, great hydrostatic pressure, and low levels of dissolved oxygen-conditions predicted to exert highly specific selection pressures. In Lake Malawi over 800 cichlid species have evolved, and this adaptive radiation extends into the "twilight zone" below 50 m. We use population-level RAD-seq data to investigate whether four endemic deepwater species ( spp.) have experienced divergent selection within this environment. We identify candidate genes including regulators of photoreceptor function, photopigments, lens morphology, and haemoglobin, many not previously implicated in cichlid adaptive radiations. Colocalization of functionally linked genes suggests coadapted "supergene" complexes. Comparisons of to the broader Lake Malawi radiation using genome resequencing data revealed functional substitutions and signatures of positive selection in candidate genes. Our data provide unique insights into genomic adaptation within deepwater habitats, and suggest genome-level specialization for life at depth as an important process in cichlid radiation.

Citing Articles

Dynamic Outlier Slicing Allows Broader Exploration of Adaptive Divergence: A Comparison of Individual Genome and Pool-Seq Data Linked to Humic Adaptation in Perch.

Lopez M, Ozerov M, Pukk L, Noreikiene K, Gross R, Vasemagi A Mol Ecol. 2025; :e17659.

PMID: 39846218 PMC: 11815547. DOI: 10.1111/mec.17659.


A whole-body micro-CT scan library that captures the skeletal diversity of Lake Malawi cichlid fishes.

Bucklow C, Genner M, Turner G, Maclaine J, Benson R, Verd B Sci Data. 2024; 11(1):984.

PMID: 39256465 PMC: 11387623. DOI: 10.1038/s41597-024-03687-1.


New chromosome-scale genomes provide insights into marine adaptations of sea snakes (Hydrophis: Elapidae).

Ludington A, Hammond J, Breen J, Deveson I, Sanders K BMC Biol. 2023; 21(1):284.

PMID: 38066641 PMC: 10709897. DOI: 10.1186/s12915-023-01772-2.


Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika.

Ricci V, Ronco F, Boileau N, Salzburger W Sci Adv. 2023; 9(36):eadg6568.

PMID: 37672578 PMC: 10482347. DOI: 10.1126/sciadv.adg6568.


Sexual imprinting leads to speciation in locally adapted populations.

Sibly R, Curnow R Ecol Evol. 2022; 12(11):e9479.

PMID: 36381395 PMC: 9643133. DOI: 10.1002/ece3.9479.


References
1.
Twigg S, Versnel S, Nurnberg G, Lees M, Bhat M, Hammond P . Frontorhiny, a distinctive presentation of frontonasal dysplasia caused by recessive mutations in the ALX3 homeobox gene. Am J Hum Genet. 2009; 84(5):698-705. PMC: 2681074. DOI: 10.1016/j.ajhg.2009.04.009. View

2.
Parsons K, Trent Taylor A, Powder K, Albertson R . Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids. Nat Commun. 2014; 5:3629. PMC: 4238940. DOI: 10.1038/ncomms4629. View

3.
Coop G, Witonsky D, Di Rienzo A, Pritchard J . Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010; 185(4):1411-23. PMC: 2927766. DOI: 10.1534/genetics.110.114819. View

4.
Liu B, Rooker S, Helms J . Molecular control of facial morphology. Semin Cell Dev Biol. 2009; 21(3):309-13. PMC: 3410822. DOI: 10.1016/j.semcdb.2009.09.002. View

5.
Sivasundar A, Palumbi S . Parallel amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth. J Evol Biol. 2010; 23(6):1159-69. DOI: 10.1111/j.1420-9101.2010.01977.x. View