» Articles » PMID: 30271953

Nanosurfaces Modulate the Mechanism of Peri-implant Endosseous Healing by Regulating Neovascular Morphogenesis

Overview
Journal Commun Biol
Specialty Biology
Date 2018 Oct 2
PMID 30271953
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Nanosurfaces have improved clinical osseointegration by increasing bone/implant contact. Neovascularization is considered an essential prerequisite to osteogenesis, but no previous reports to our knowledge have examined the effect of surface topography on the spatio-temporal pattern of neovascularization during peri-implant healing. We have developed a cranial window model to study peri-implant healing intravitally over clinically relevant time scales as a function of implant topography. Quantitative intravital confocal imaging reveals that changing the topography (but not chemical composition) of an implant profoundly affects the pattern of peri-implant neovascularization. New vessels develop proximal to the implant and the vascular network matures sooner in the presence of an implant nanosurface. Accelerated angiogenesis can lead to earlier osseointegration through the delivery of osteogenic precursors to, and direct formation of bone on, the implant surface. This study highlights a critical aspect of peri-implant healing, but also informs the biological rationale for the surface design of putative endosseous implant materials.

Citing Articles

Surface modifications and coatings to improve osseointegration and antimicrobial activity on titanium surfaces: A statistical review over the last decade.

Raju K, Biswas A J Orthop. 2025; 67:68-87.

PMID: 39902142 PMC: 11787716. DOI: 10.1016/j.jor.2025.01.002.


Cell-based therapy in the treatment of musculoskeletal diseases.

Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best T Stem Cells Transl Med. 2024; 13(10):959-978.

PMID: 39226104 PMC: 11465182. DOI: 10.1093/stcltm/szae049.


Multifunctional surface of the nano-morphic PEEK implant with enhanced angiogenic, osteogenic and antibacterial properties.

Zhang J, Ma T, Liu X, Zhang X, Meng W, Wu J Regen Biomater. 2024; 11:rbae067.

PMID: 38974666 PMC: 11226884. DOI: 10.1093/rb/rbae067.


3D printing metal implants in orthopedic surgery: Methods, applications and future prospects.

Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z J Orthop Translat. 2023; 42:94-112.

PMID: 37675040 PMC: 10480061. DOI: 10.1016/j.jot.2023.08.004.


Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants.

Sefa S, Espiritu J, Cwieka H, Greving I, Flenner S, Will O Bioact Mater. 2023; 30:154-168.

PMID: 37575877 PMC: 10412723. DOI: 10.1016/j.bioactmat.2023.07.017.


References
1.
Kassab G . Scaling laws of vascular trees: of form and function. Am J Physiol Heart Circ Physiol. 2005; 290(2):H894-903. DOI: 10.1152/ajpheart.00579.2005. View

2.
Winkler I, Barbier V, Wadley R, Zannettino A, Williams S, Levesque J . Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood. 2010; 116(3):375-85. DOI: 10.1182/blood-2009-07-233437. View

3.
Holstein J, Becker S, Fiedler M, Garcia P, Histing T, Klein M . Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. Injury. 2010; 42(8):765-71. DOI: 10.1016/j.injury.2010.11.020. View

4.
Crisan M, Chen C, Corselli M, Andriolo G, Lazzari L, Peault B . Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci. 2009; 1176:118-23. DOI: 10.1111/j.1749-6632.2009.04967.x. View

5.
Bauer S, Bauer R, Velazquez O . Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vasc Endovascular Surg. 2005; 39(4):293-306. DOI: 10.1177/153857440503900401. View