» Articles » PMID: 30249603

Postsynaptic Localization and Regulation of AMPA Receptors and Cav1.2 by β2 Adrenergic Receptor/PKA and Ca/CaMKII Signaling

Overview
Journal EMBO J
Date 2018 Sep 26
PMID 30249603
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

The synapse transmits, processes, and stores data within its tiny space. Effective and specific signaling requires precise alignment of the relevant components. This review examines current insights into mechanisms of AMPAR and NMDAR localization by PSD-95 and their spatial distribution at postsynaptic sites to illuminate the structural and functional framework of postsynaptic signaling. It subsequently delineates how β adrenergic receptor (β AR) signaling via adenylyl cyclase and the cAMP-dependent protein kinase PKA is organized within nanodomains. Here, we discuss targeting of β AR, adenylyl cyclase, and PKA to defined signaling complexes at postsynaptic sites, i.e., AMPARs and the L-type Ca channel Ca1.2, and other subcellular surface localizations, the role of A kinase anchor proteins, the physiological relevance of the spatial restriction of corresponding signaling, and their interplay with signal transduction by the Ca- and calmodulin-dependent kinase CaMKII How localized and specific signaling by cAMP occurs is a central cellular question. The dendritic spine constitutes an ideal paradigm for elucidating the dimensions of spatially restricted signaling because of their small size and defined protein composition.

Citing Articles

Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca channel may modulate its β-adrenergic regulation.

Oz S, Keren-Raifman T, Sharon T, Subramaniam S, Pallien T, Katz M BMC Biol. 2024; 22(1):276.

PMID: 39609812 PMC: 11603854. DOI: 10.1186/s12915-024-02076-9.


Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses.

Chen Y, Liu S, Jacobi A, Jeng G, Ulrich J, Stein I Front Synaptic Neurosci. 2024; 16:1291262.

PMID: 38660466 PMC: 11039796. DOI: 10.3389/fnsyn.2024.1291262.


Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex.

Glausier J, Bouchet-Marquis C, Maier M, Banks-Tibbs T, Wu K, Ning J bioRxiv. 2024; .

PMID: 38463986 PMC: 10925168. DOI: 10.1101/2024.02.26.582174.


Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders.

Palamarchuk I, Slavich G, Vaillancourt T, Rajji T BMC Neurosci. 2023; 24(1):65.

PMID: 38087196 PMC: 10714507. DOI: 10.1186/s12868-023-00831-2.


The Expression of Epac2 and GluA3 in an Alzheimer's Disease Experimental Model and Postmortem Patient Samples.

Zhang T, Musheshe N, van der Veen C, Kessels H, Dolga A, De Deyn P Biomedicines. 2023; 11(8).

PMID: 37626593 PMC: 10452319. DOI: 10.3390/biomedicines11082096.


References
1.
Plant K, Pelkey K, Bortolotto Z, Morita D, Terashima A, McBain C . Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci. 2006; 9(5):602-4. DOI: 10.1038/nn1678. View

2.
Patel N, Stengel F, Aebersold R, Gold M . Molecular basis of AKAP79 regulation by calmodulin. Nat Commun. 2017; 8(1):1681. PMC: 5698441. DOI: 10.1038/s41467-017-01715-w. View

3.
Carter M, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S . Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010; 13(12):1526-33. PMC: 3174240. DOI: 10.1038/nn.2682. View

4.
Shih M, Lin F, Scott J, Wang H, Malbon C . Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem. 1999; 274(3):1588-95. DOI: 10.1074/jbc.274.3.1588. View

5.
Fischer Q, Beaver C, Yang Y, Rao Y, Jakobsdottir K, Storm D . Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity. J Neurosci. 2004; 24(41):9049-58. PMC: 6730071. DOI: 10.1523/JNEUROSCI.2409-04.2004. View