» Articles » PMID: 30240613

CRISPR/Cas9-based Genome Editing in Pseudomonas Aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species

Overview
Journal iScience
Publisher Cell Press
Date 2018 Sep 22
PMID 30240613
Citations 74
Authors
Affiliations
Soon will be listed here.
Abstract

Pseudomonas species are a large class of gram-negative bacteria that exhibit significant biomedical, ecological, and industrial importance. Despite the extensive research and wide applications, genetic manipulation in Pseudomonas species, in particular in the major human pathogen Pseudomonas aeruginosa, remains a laborious endeavor. Here we report the development of a genome editing method pCasPA/pACRISPR by harnessing the CRISPR/Cas9 and the phage λ-Red recombination systems. The method allows for efficient and scarless genetic manipulation in P. aeruginosa. By engineering the fusion of the cytidine deaminase APOBEC1 and the Cas9 nickase, we further develop a base editing system pnCasPA-BEC, which enables highly efficient gene inactivation and point mutations in a variety of Pseudomonas species, such as P. aeruginosa, Pseudomonas putida, Pseudomonas fluorescens, and Pseudomonas syringae. Application of the two genome editing methods will dramatically accelerate a wide variety of investigations, such as bacterial physiology study, drug target exploration, and metabolic engineering.

Citing Articles

High prevalence of carbapenem-resistant and identification of a novel VIM-type metallo-β-lactamase, VIM-92, in clinical isolates from northern China.

Zhao L, Pu J, Liu Y, Cai H, Han M, Yu Y Front Microbiol. 2025; 16:1543509.

PMID: 40078538 PMC: 11897005. DOI: 10.3389/fmicb.2025.1543509.


Efficient secretory expression, purification, and characterization of lipase in Pseudomonas aeruginosa M18, with multifunctional applications in diagnostics.

Liu Y, Zhu P, Kong L, Wang J, Ji C, Li Y World J Microbiol Biotechnol. 2025; 41(2):57.

PMID: 39885054 DOI: 10.1007/s11274-025-04279-w.


Gene editing tool-loaded biomimetic cationic vesicles with highly efficient bacterial internalization for in vivo eradication of pathogens.

Jia X, Yuan B, Wang W, Wang K, Ling D, Wei M J Nanobiotechnology. 2024; 22(1):787.

PMID: 39710679 PMC: 11663325. DOI: 10.1186/s12951-024-03065-4.


AND Logic Based on Suppressor tRNAs Enables Stringent Control of Sliding Base Editors in .

Velazquez E, de Lorenzo V ACS Synth Biol. 2024; 13(12):4191-4201.

PMID: 39660532 PMC: 11669171. DOI: 10.1021/acssynbio.4c00640.


In vivo divergent evolution of cross-resistance to new β-lactam/β-lactamase inhibitor combinations in Pseudomonas aeruginosa following ceftazidime/avibactam treatment.

Cai H, Chen M, Li Y, Wang N, Ni H, Zhang P Infection. 2024; .

PMID: 39514175 DOI: 10.1007/s15010-024-02432-5.


References
1.
Moreno R, Rojo F . The contribution of proteomics to the unveiling of the survival strategies used by Pseudomonas putida in changing and hostile environments. Proteomics. 2013; 13(18-19):2822-30. DOI: 10.1002/pmic.201200503. View

2.
Brint J, Ohman D . Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol. 1995; 177(24):7155-63. PMC: 177595. DOI: 10.1128/jb.177.24.7155-7163.1995. View

3.
Hauser A, Jain M, Bar-Meir M, McColley S . Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev. 2011; 24(1):29-70. PMC: 3021203. DOI: 10.1128/CMR.00036-10. View

4.
Ghanta K, Chen Z, Mir A, Dokshin G, Krishnamurthy P, Yoon Y . 5'-Modifications improve potency and efficacy of DNA donors for precision genome editing. Elife. 2021; 10. PMC: 8568340. DOI: 10.7554/eLife.72216. View

5.
Wang H, La Russa M, Qi L . CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem. 2016; 85:227-64. DOI: 10.1146/annurev-biochem-060815-014607. View