» Articles » PMID: 30225568

Aptamer Based Electrochemiluminescent Determination of Bisphenol A by Using Carboxylated Graphitic Carbon Nitride

Overview
Journal Mikrochim Acta
Specialties Biotechnology
Chemistry
Date 2018 Sep 19
PMID 30225568
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

An electrochemiluminescence (ECL) based assay is described for the determination of the endocrine disruptor bisphenol A (BPA). The method is based on the use of carboxylated graphitic carbon nitride (C-g-CN) carrying an immobilized aptamer against BPA. In the presence of BPA, the ECL signal decreases due to ECL energy transfer from excited-state C-g-CN to the BPA oxidation product. Under the optimal conditions, ECL intensity increases linearly in the 0.1 pM to 1 nM BPA concentration range. The detection limit is as low as 30 fM. The assay has excellent sensitivity, outstanding stability and high selectivity. It was applied to the determination of BPA in spiked water samples. Graphical abstract Aptamer modified carboxylated graphitic carbon nitride was synthesized and applied in an electrochemiluminescence-based aptasensor for bisphenol A.

Citing Articles

Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing.

Idris A, Oseghe E, Msagati T, Kuvarega A, Feleni U, Mamba B Sensors (Basel). 2020; 20(20).

PMID: 33050361 PMC: 7600177. DOI: 10.3390/s20205743.


Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA-dye complex.

Li H, Ding S, Wang W, Lv Q, Wang Z, Bai H Mikrochim Acta. 2019; 186(12):860.

PMID: 31786663 DOI: 10.1007/s00604-019-4006-4.


An electrochemiluminescence immunosensor for the N-terminal brain natriuretic peptide based on the high quenching ability of polydopamine.

Zhao Y, Li L, Hu L, Zhang Y, Wu D, Ma H Mikrochim Acta. 2019; 186(9):606.

PMID: 31385117 DOI: 10.1007/s00604-019-3709-x.


Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher.

Ran P, Song J, Mo F, Wu J, Liu P, Fu Y Mikrochim Acta. 2019; 186(5):276.

PMID: 30969371 DOI: 10.1007/s00604-019-3397-6.


Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-CN via porous carbon spheres.

Liu Y, Da H, Chai Y, Yuan R, Liu H Mikrochim Acta. 2019; 186(5):275.

PMID: 30969367 DOI: 10.1007/s00604-019-3393-x.

References
1.
Cheng C, Huang Y, Tian X, Zheng B, Li Y, Yuan H . Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem. 2012; 84(11):4754-9. DOI: 10.1021/ac300205w. View

2.
Lang I, Galloway T, Scarlett A, Henley W, Depledge M, Wallace R . Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008; 300(11):1303-10. DOI: 10.1001/jama.300.11.1303. View

3.
Qu H, Csordas A, Wang J, Oh S, Eisenstein M, Soh H . Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions. ACS Nano. 2016; 10(8):7558-65. PMC: 5653223. DOI: 10.1021/acsnano.6b02558. View

4.
Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim D . Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem. 2014; 86(9):4188-95. DOI: 10.1021/ac403635f. View

5.
Baldrich E, Restrepo A, OSullivan C . Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal Chem. 2004; 76(23):7053-63. DOI: 10.1021/ac049258o. View