» Articles » PMID: 30204770

Filamentation and Restoration of Normal Growth in Escherichia Coli Using a Combined CRISPRi SgRNA/antisense RNA Approach

Overview
Journal PLoS One
Date 2018 Sep 12
PMID 30204770
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR interference (CRISPRi) using dCas9-sgRNA is a powerful tool for the exploration and manipulation of gene functions. Here we quantify the reversible switching of a central process of the bacterial cell cycle by CRISPRi and an antisense RNA mechanism. Reversible induction of filamentous growth in E. coli has been recently demonstrated by controlling the expression levels of the bacterial cell division proteins FtsZ/FtsA via CRISPRi. If FtsZ falls below a critical level, cells cannot divide. However, the cells remain metabolically active and continue with DNA replication. We surmised that this makes them amenable to an inducible antisense RNA strategy to counteract FtsZ inhibition. We show that both static and inducible thresholds can adjust the characteristics of the switching process. Combining bulk data with single cell measurements, we characterize the efficiency of the switching process. Successful restoration of division is found to occur faster in the presence of antisense sgRNAs than upon simple termination of CRISPRi induction.

Citing Articles

Generation of DNA oligomers with similar chemical kinetics via in-silico optimization.

Tobiason M, Yurke B, Hughes W Commun Chem. 2023; 6(1):226.

PMID: 37853171 PMC: 10584830. DOI: 10.1038/s42004-023-01026-w.


Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome.

Nguyen H, Chen X, Parada C, Luo A, Shih O, Jeng U Nat Commun. 2023; 14(1):1903.

PMID: 37019934 PMC: 10076392. DOI: 10.1038/s41467-023-37543-4.


Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback.

Specht D, Cortes L, Lambert G ACS Synth Biol. 2022; 11(9):2927-2937.

PMID: 36017994 PMC: 9486968. DOI: 10.1021/acssynbio.2c00155.


The Search for Antibacterial Inhibitors Targeting Cell Division Protein FtsZ at Its Nucleotide and Allosteric Binding Sites.

Andreu J, Huecas S, Araujo-Bazan L, Vazquez-Villa H, Martin-Fontecha M Biomedicines. 2022; 10(8).

PMID: 36009372 PMC: 9405007. DOI: 10.3390/biomedicines10081825.


Filamentous morphology of bacterial pathogens: regulatory factors and control strategies.

Khan F, Jeong G, Tabassum N, Mishra A, Kim Y Appl Microbiol Biotechnol. 2022; 106(18):5835-5862.

PMID: 35989330 DOI: 10.1007/s00253-022-12128-1.


References
1.
Gottfredsson M, Erlendsdottir H, Sigfusson A, Gudmundsson S . Characteristics and dynamics of bacterial populations during postantibiotic effect determined by flow cytometry. Antimicrob Agents Chemother. 1998; 42(5):1005-11. PMC: 105733. DOI: 10.1128/AAC.42.5.1005. View

2.
Lee Y, Hoynes-OConnor A, Leong M, Moon T . Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Res. 2016; 44(5):2462-73. PMC: 4797300. DOI: 10.1093/nar/gkw056. View

3.
Vigouroux A, Oldewurtel E, Cui L, Bikard D, van Teeffelen S . Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol Syst Biol. 2018; 14(3):e7899. PMC: 5842579. DOI: 10.15252/msb.20177899. View

4.
Robertson , Button , KOCH . Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry . Appl Environ Microbiol. 1998; 64(10):3900-9. PMC: 106576. DOI: 10.1128/AEM.64.10.3900-3909.1998. View

5.
Ricard M, Hirota Y . Process of cellular division in Escherichia coli: physiological study on thermosensitive mutants defective in cell division. J Bacteriol. 1973; 116(1):314-22. PMC: 246424. DOI: 10.1128/jb.116.1.314-322.1973. View