» Articles » PMID: 30204203

Nonequilibrium Phase Diagrams for Actomyosin Networks

Overview
Journal Soft Matter
Specialties Biochemistry
Chemistry
Date 2018 Sep 12
PMID 30204203
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Living cells dynamically modulate the local morphologies of their actin networks to perform biological functions, including force transduction, intracellular transport, and cell division. A major challenge is to understand how diverse structures of the actin cytoskeleton are assembled from a limited set of molecular building blocks. Here we study the spontaneous self-assembly of a minimal model of cytoskeletal materials, consisting of semiflexible actin filaments, crosslinkers, and molecular motors. Using coarse-grained simulations, we demonstrate that by changing concentrations and kinetics of crosslinkers and motors, as well as filament lengths, we can generate three distinct structural phases of actomyosin assemblies: bundled, polarity-sorted, and contracted. We introduce new metrics to distinguish these structural phases and demonstrate their functional roles. We find that the binding kinetics of motors and crosslinkers can be tuned to optimize contractile force generation, motor transport, and mechanical response. By quantitatively characterizing the relationships between the modes of cytoskeletal self-assembly, the resulting structures, and their functional consequences, our work suggests new principles for the design of active materials.

Citing Articles

Polarity sorting of actin filaments by motor-driven cargo transport.

Akenuwa O, Abel S Biophys J. 2025; 124(4):704-716.

PMID: 39827370 PMC: 11900188. DOI: 10.1016/j.bpj.2025.01.007.


Morphometric analysis of actin networks.

Akenuwa O, Gu J, Nebenfuhr A, Abel S Mol Biol Cell. 2024; 35(12):ar146.

PMID: 39441713 PMC: 11656467. DOI: 10.1091/mbc.E24-06-0248.


Motor crosslinking augments elasticity in active nematics.

Redford S, Colen J, Shivers J, Zemsky S, Molaei M, Floyd C Soft Matter. 2024; 20(11):2480-2490.

PMID: 38385209 PMC: 10933839. DOI: 10.1039/d3sm01176c.


A coarse-grained simulation model for colloidal self-assembly explicit mobile binders.

Mitra G, Chang C, McMullen A, Puchall D, Brujic J, Hocky G Soft Matter. 2023; 19(23):4223-4236.

PMID: 37255223 PMC: 10330678. DOI: 10.1039/d3sm00196b.


Active layer dynamics drives a transition to biofilm fingering.

Young E, Melaugh G, Allen R NPJ Biofilms Microbiomes. 2023; 9(1):17.

PMID: 37024470 PMC: 10079924. DOI: 10.1038/s41522-023-00380-w.


References
1.
Mickel W, Munster S, Jawerth L, Vader D, Weitz D, Sheppard A . Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy. Biophys J. 2008; 95(12):6072-80. PMC: 2599830. DOI: 10.1529/biophysj.108.135939. View

2.
Kim T, Hwang W, Lee H, Kamm R . Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput Biol. 2009; 5(7):e1000439. PMC: 2703781. DOI: 10.1371/journal.pcbi.1000439. View

3.
McFadden W, McCall P, Gardel M, Munro E . Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput Biol. 2017; 13(12):e1005811. PMC: 5757993. DOI: 10.1371/journal.pcbi.1005811. View

4.
Salbreux G, Charras G, Paluch E . Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 2012; 22(10):536-45. DOI: 10.1016/j.tcb.2012.07.001. View

5.
Soares E Silva M, Depken M, Stuhrmann B, Korsten M, MacKintosh F, Koenderink G . Active multistage coarsening of actin networks driven by myosin motors. Proc Natl Acad Sci U S A. 2011; 108(23):9408-13. PMC: 3111259. DOI: 10.1073/pnas.1016616108. View