» Articles » PMID: 30202512

Biomimetic Oyster Shell-replicated Topography Alters the Behaviour of Human Skeletal Stem Cells

Overview
Journal J Tissue Eng
Date 2018 Sep 12
PMID 30202512
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The regenerative potential of skeletal stem cells provides an attractive prospect to generate bone tissue needed for musculoskeletal reparation. A central issue remains efficacious, controlled cell differentiation strategies to aid progression of cell therapies to the clinic. The nacre surface from shells is known to enhance bone formation. However, to date, there is a paucity of information on the role of the topography of surfaces, nacre and prism. To investigate this, nacre and prism topographical features were replicated onto polycaprolactone and skeletal stem cell behaviour on the surfaces studied. Skeletal stem cells on nacre surfaces exhibited an increase in cell area, increase in expression of osteogenic markers ( < 0.05) and ( < 0.01) and increased metabolite intensity ( < 0.05), indicating a role of nacre surface to induce osteogenic differentiation, while on prism surfaces, skeletal stem cells did not show alterations in cell area or osteogenic marker expression and a decrease in metabolite intensity ( < 0.05), demonstrating a distinct role for the prism surface, with the potential to maintain the skeletal stem cell phenotype.

Citing Articles

Injectable photosensitive bone cement enhancing angiogenesis and osteogenic differentiation for the treatment of bone nonunion.

Wen M, Guo X, Gong Y, Xue F, Fan Z, Kang Z APL Bioeng. 2025; 9(1):016114.

PMID: 40078866 PMC: 11903057. DOI: 10.1063/5.0246207.


Replication of natural surface topographies to generate advanced cell culture substrates.

Monteiro N, Fangueiro J, Reis R, Neves N Bioact Mater. 2023; 28:337-347.

PMID: 37519922 PMC: 10382971. DOI: 10.1016/j.bioactmat.2023.06.002.


Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs.

Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W Theranostics. 2023; 13(10):3245-3275.

PMID: 37351163 PMC: 10283054. DOI: 10.7150/thno.84759.


Effects of Fiber Cross-Angle Structures on the Mechanical Property of 3D Printed Scaffolds and Performance of Seeded MC3T3-E1 Cells.

Liu H, Qiu L, Liu H, Li F, Fan Y, Meng L ACS Omega. 2021; 6(49):33665-33675.

PMID: 34926914 PMC: 8675015. DOI: 10.1021/acsomega.1c04672.


Foamy oysters: vesicular microstructure production in the Gryphaeidae via emulsification.

Checa A, Linares F, Maldonado-Valderrama J, Harper E J R Soc Interface. 2020; 17(170):20200505.

PMID: 32993433 PMC: 7536044. DOI: 10.1098/rsif.2020.0505.


References
1.
Xia J, Sinelnikov I, Han B, Wishart D . MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res. 2015; 43(W1):W251-7. PMC: 4489235. DOI: 10.1093/nar/gkv380. View

2.
Knobloch M, Pilz G, Ghesquiere B, Kovacs W, Wegleiter T, Moore D . A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity. Cell Rep. 2017; 20(9):2144-2155. PMC: 5583518. DOI: 10.1016/j.celrep.2017.08.029. View

3.
Gothard D, Greenhough J, Ralph E, Oreffo R . Prospective isolation of human bone marrow stromal cell subsets: A comparative study between Stro-1-, CD146- and CD105-enriched populations. J Tissue Eng. 2014; 5:2041731414551763. PMC: 4221949. DOI: 10.1177/2041731414551763. View

4.
Kato R, Roy B, De Oliveira F, Ferraz E, de Oliveira P, Kemper A . Nanotopography directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit. J Cell Physiol. 2014; 229(11):1690-6. PMC: 4926039. DOI: 10.1002/jcp.24614. View

5.
Rogatzki M, Ferguson B, Goodwin M, Gladden L . Lactate is always the end product of glycolysis. Front Neurosci. 2015; 9:22. PMC: 4343186. DOI: 10.3389/fnins.2015.00022. View