» Articles » PMID: 30190626

Chemistry Below Graphene: Decoupling Epitaxial Graphene from Metals by Potential-controlled Electrochemical Oxidation

Abstract

While high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces. A multi-technique characterization combined with calculations was employed to fully explain the different steps involved in the process. It was shown that, after a controlled electrochemical oxidation process, a single-atom thick metal-hydroxide layer intercalates below graphene, decoupling it from the metal substrate. This decoupling process occurs without disrupting the morphology and electronic properties of graphene. The results suggest that suitably optimized electrochemical treatments may provide effective alternatives to current transfer protocols for graphene and other 2D materials on diverse metal surfaces.

Citing Articles

Acrylates Polymerization on Covalent Plasma-Assisted Functionalized Graphene: A Route to Synthesize Hybrid Functional Materials.

Munoz R, Leon-Boigues L, Lopez-Elvira E, Munuera C, Vazquez L, Mompean F ACS Appl Mater Interfaces. 2023; 15(39):46171-46180.

PMID: 37738025 PMC: 10561134. DOI: 10.1021/acsami.3c07200.


Impedance Spectroscopy of Encapsulated Single Graphene Layers.

Schmidt R, Carrascoso Plana F, Nemes N, Mompean F, Garcia-Hernandez M Nanomaterials (Basel). 2022; 12(5).

PMID: 35269292 PMC: 8912308. DOI: 10.3390/nano12050804.


LiCl Photodissociation on Graphene: A Photochemical Approach to Lithium Intercalation.

Azpeitia J, Merino P, Ruiz-Gomez S, Foerster M, Aballe L, Garcia-Hernandez M ACS Appl Mater Interfaces. 2021; 13(35):42205-42211.

PMID: 34432411 PMC: 8431332. DOI: 10.1021/acsami.1c11654.


Oxygen intercalation in PVD graphene grown on copper substrates: A decoupling approach.

Azpeitia J, Palacio I, Martinez J, Munoz-Ochando I, Lauwaet K, Mompean F Appl Surf Sci. 2020; 529:147100.

PMID: 33154607 PMC: 7116314. DOI: 10.1016/j.apsusc.2020.147100.


Mechanism of CO Intercalation through the Graphene/Ni(111) Interface and Effect of Doping.

Perilli D, Fiori S, Panighel M, Liu H, Cepek C, Peressi M J Phys Chem Lett. 2020; 11(20):8887-8892.

PMID: 32966082 PMC: 7735739. DOI: 10.1021/acs.jpclett.0c02447.


References
1.
Schumacher S, Wehling T, Lazic P, Runte S, Forster D, Busse C . The backside of graphene: manipulating adsorption by intercalation. Nano Lett. 2013; 13(11):5013-9. DOI: 10.1021/nl402797j. View

2.
Feng X, Maier S, Salmeron M . Water splits epitaxial graphene and intercalates. J Am Chem Soc. 2012; 134(12):5662-8. DOI: 10.1021/ja3003809. View

3.
Zhu W, Low T, Perebeinos V, Bol A, Zhu Y, Yan H . Structure and electronic transport in graphene wrinkles. Nano Lett. 2012; 12(7):3431-6. DOI: 10.1021/nl300563h. View

4.
Omiciuolo L, Hernandez E, Miniussi E, Orlando F, Lacovig P, Lizzit S . Bottom-up approach for the low-cost synthesis of graphene-alumina nanosheet interfaces using bimetallic alloys. Nat Commun. 2014; 5:5062. DOI: 10.1038/ncomms6062. View

5.
Munoz R, Munuera C, Martinez J, Azpeitia J, Gomez-Aleixandre C, Garcia-Hernandez M . Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition. 2d Mater. 2017; 4(1). PMC: 5214927. DOI: 10.1088/2053-1583/4/1/015009. View