» Articles » PMID: 30186407

Fmr1 Protects Cardiomyocytes Against Lipopolysaccharide-induced Myocardial Injury

Overview
Journal Exp Ther Med
Specialty Pathology
Date 2018 Sep 7
PMID 30186407
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The present study explored the mechanisms by which fragile X mental retardation 1 (fmr1) overexpression inhibits lipopolysaccharide (LPS)-induced cardiomyocyte injury. Factors including oxidative stress reaction, mitochondrial membrane potential variation and cell apoptosis were evaluated. The viability of H9c2 cells was evaluated with a Cell Counting Kit-8 assay after cells were treated with LPS at different concentrations (0, 1, 3, 6 and 9 µg/ml) for various durations (4, 12 and 24 h). Flow cytometry was used to determine variations in reactive oxygen species (ROS), mitochondrial membrane potential and cell apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to detect the levels of apoptosis-associated factors, and western blot analysis was used to determine the phosphorylation levels of phosphoinositide-3 kinase (PI3K), Akt and forkhead box (Fox)O3a. The results indicated that LPS decreased the viability of H9c2 cells in a dose- and time-dependent manner. Overexpression of fmr1 inhibited the LPS-induced decrease in the mitochondrial membrane potential and the production of ROS as well as apoptosis in H9c2 cells. Fmr1 also inhibited LPS-induced reductions in antioxidant enzyme activities, including those of superoxide dismutase and reduced/oxidized glutathione ratio, and decreased LPS-associated increases in the lipid peroxidation product malondialdehyde. Apoptosis-associated factors were identified to be involved in the effects of Fmr1. Overexpression of Fmr1 attenuated LPS-associated increases in the apoptosis-activating factors B-cell lymphoma 2 (Bcl-2)-associated X protein and caspase-3 and decreases in apoptosis inhibitors, including Bcl-2 and X-linked inhibitor of apoptosis protein. Fmr1 overexpression also reduced LPS-induced increases in the phosphorylation levels of PI3K, Akt and FoxO3a. In conclusion, fmr1 overexpression alleviated oxidative stress and apoptosis in H9c2 cardiomyocytes injured by LPS via regulating oxidative stress and apoptosis-associated factors, as well as the PI3K/Akt pathway. This information may provide a novel and effective therapeutic strategy for heart diseases.

Citing Articles

Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Alleviates Sepsis-Induced Cardiomyopathy by Inhibiting Pyroptosis.

Liu G, Chen S, Yuan X, Chen G, Xu L, Meng X Iran J Public Health. 2023; 52(11):2380-2389.

PMID: 38106831 PMC: 10719710. DOI: 10.18502/ijph.v52i11.14052.


Salsolinol improves angiotensin II‑induced myocardial fibrosis via inhibition of LSD1 through regulation of the STAT3/Notch‑1 signaling pathway.

Zhang X, Shao Z, Ni Y, Chen F, Yu X, Wen J Exp Ther Med. 2023; 26(5):527.

PMID: 37869646 PMC: 10587875. DOI: 10.3892/etm.2023.12226.


Pressure overload-induced systolic heart failure is associated with characteristic myocardial microRNA expression signature and post-transcriptional gene regulation in male rats.

Ruppert M, Korkmaz-Icoz S, Benczik B, Agg B, Nagy D, Balint T Sci Rep. 2023; 13(1):16122.

PMID: 37752166 PMC: 10522609. DOI: 10.1038/s41598-023-43171-1.


M6A regulator methylation patterns and characteristics of immunity in acute ST-segment elevation myocardial infarction.

Yang J, Shangguan Q, Xie G, Yang M, Sheng G Sci Rep. 2023; 13(1):15688.

PMID: 37735234 PMC: 10514189. DOI: 10.1038/s41598-023-42959-5.


Accelerated Apoptosis and Down-Regulated FMRP in Human Neuroblastoma Cells with CRISPR/ Genome Editing.

Zhang R, Xu H, Lu J, Chen Y, Zhang Y, Xiao L Iran J Public Health. 2023; 52(4):703-712.

PMID: 37551173 PMC: 10404333. DOI: 10.18502/ijph.v52i4.12438.


References
1.
Vant Padje S, Chaudhry B, Severijnen L, der Linde H, Mientjes E, Oostra B . Reduction in fragile X related 1 protein causes cardiomyopathy and muscular dystrophy in zebrafish. J Exp Biol. 2009; 212(Pt 16):2564-70. DOI: 10.1242/jeb.032532. View

2.
Jiraanont P, Hagerman R, Neri G, Zollino M, Murdolo M, Tassone F . Germinal mosaicism for a deletion of the FMR1 gene leading to fragile X syndrome. Eur J Med Genet. 2016; 59(9):459-62. DOI: 10.1016/j.ejmg.2016.08.009. View

3.
Lin W, Yeh W . Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock. 2005; 24(3):206-9. DOI: 10.1097/01.shk.0000180074.69143.77. View

4.
Chen J, Cammarata P, Baines C, Yager J . Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta. 2009; 1793(10):1540-70. PMC: 2744640. DOI: 10.1016/j.bbamcr.2009.06.001. View

5.
Fattahi F, Ward P . Complement and sepsis-induced heart dysfunction. Mol Immunol. 2016; 84:57-64. PMC: 5366269. DOI: 10.1016/j.molimm.2016.11.012. View