» Articles » PMID: 30180715

The Effect of Pore Size and Density on Ultrasonic Attenuation in Porous Structures with Mono-disperse Random Pore Distribution: A Two-dimensional In-silico Study

Overview
Journal J Acoust Soc Am
Date 2018 Sep 6
PMID 30180715
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

This work proposes a power law model to describe the attenuation of ultrasonic waves in non-absorbing heterogeneous media with randomly distributed scatterers, mimicking a simplified structure of cortical bone. This paper models the propagation in heterogeneous structures with controlled porosity using a two-dimensional finite-difference time domain numerical simulation in order to measure the frequency dependent attenuation. The paper then fits a phenomenological model to the simulated frequency dependent attenuation by optimizing parameters under an ordinary least squares framework. Local sensitivity analysis is then performed on the resulting parameter estimates in order to determine to which estimates the model is most sensitive. This paper finds that the sensitivity of the model to various parameter estimates depends on the micro-architectural parameters, pore diameter () and pore density (). In order to get a sense for how confidently model parameters are able to be estimated, 95% confidence intervals for these estimates are calculated. In doing so, the ability to estimate model-sensitive parameters with a high degree of confidence is established. In the future, being able to accurately estimate model parameters from which micro-architectural ones could be inferred will allow pore density and diameter to be estimated via an inverse problem given real or simulated ultrasonic data to be determined.

Citing Articles

Influence of micro-structural parameters on apparent absorption coefficient in porous structures mimicking cortical bone.

Karbalaeisadegh Y, Yousefian O, Muller M IEEE Int Ultrason Symp. 2024; 2018.

PMID: 39092167 PMC: 11293489. DOI: 10.1109/ultsym.2018.8579610.


Using ultrasonic attenuation in cortical bone to infer distributions on pore size.

White R, Alexanderian A, Yousefian O, Karbalaeisadegh Y, Bekele-Maxwell K, Kasali A Appl Math Model. 2024; 109:819-832.

PMID: 39070898 PMC: 11281329. DOI: 10.1016/j.apm.2022.05.024.


Inferring porosity from frequency dependent attenuation in cortical bone mimicking porous media.

White R, Yousefian O, Banks H, Muller M IEEE Int Ultrason Symp. 2024; 2018.

PMID: 39070156 PMC: 11281349. DOI: 10.1109/ultsym.2018.8579776.


Predicting Structural Properties of Cortical Bone by Combining Ultrasonic Attenuation and an Artificial Neural Network (ANN): 2-D FDTD Study.

Mohanty K, Yousefian O, Karbalaeisadegh Y, Ulrich M, Muller M Image Anal Recognit. 2024; 11662:407-417.

PMID: 38288296 PMC: 10823500. DOI: 10.1007/978-3-030-27202-9_37.


Ultrasound Scattering in Cortical Bone.

Karbalaeisadegh Y, Muller M Adv Exp Med Biol. 2022; 1364:177-196.

PMID: 35508876 PMC: 10823499. DOI: 10.1007/978-3-030-91979-5_9.


References
1.
Clarke B . Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008; 3 Suppl 3:S131-9. PMC: 3152283. DOI: 10.2215/CJN.04151206. View

2.
Schuit S, van der Klift M, Weel A, de Laet C, Burger H, Seeman E . Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004; 34(1):195-202. DOI: 10.1016/j.bone.2003.10.001. View

3.
Chen H, Zhou X, Fujita H, Onozuka M, Kubo K . Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013; 2013:213234. PMC: 3614119. DOI: 10.1155/2013/213234. View

4.
Karjalainen J, Toyras J, Riekkinen O, Hakulinen M, Jurvelin J . Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. Ultrasound Med Biol. 2009; 35(8):1376-84. DOI: 10.1016/j.ultrasmedbio.2009.03.011. View

5.
Mandarano-Filho L, Bezuti M, Mazzer N, Barbieri C . Influence of cortical bone thickness on the ultrasound velocity. Acta Ortop Bras. 2014; 20(3):184-90. PMC: 3718431. DOI: 10.1590/S1413-78522012000300010. View