» Articles » PMID: 30177720

Crystalline TiO Protective Layer with Graded Oxygen Defects for Efficient and Stable Silicon-based Photocathode

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Sep 5
PMID 30177720
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The trade-offs between photoelectrode efficiency and stability significantly hinder the practical application of silicon-based photoelectrochemical devices. Here, we report a facile approach to decouple the trade-offs of silicon-based photocathodes by employing crystalline TiO with graded oxygen defects as protection layer. The crystalline protection layer provides high-density structure and enhances stability, and at the same time oxygen defects allow the carrier transport with low resistance as required for high efficiency. The silicon-based photocathode with black TiO shows a limiting current density of ~35.3 mA cm and durability of over 100 h at 10 mA cm in 1.0 M NaOH electrolyte, while none of photoelectrochemical behavior is observed in crystalline TiO protection layer. These findings have significant suggestions for further development of silicon-based, III-V compounds and other photoelectrodes and offer the possibility for achieving highly efficient and durable photoelectrochemical devices.

Citing Articles

Advanced TiO-Based Photocatalytic Systems for Water Splitting: Comprehensive Review from Fundamentals to Manufacturing.

Ahasan T, Edirisooriya E, Senanayake P, Xu P, Wang H Molecules. 2025; 30(5).

PMID: 40076350 PMC: 11901858. DOI: 10.3390/molecules30051127.


Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials.

Kong Z, Wu J, Liu Z, Yan D, Wu Z, Zhong C Exploration (Beijing). 2025; 5(1):20230052.

PMID: 40040831 PMC: 11875453. DOI: 10.1002/EXP.20230052.


Photoactive nanomaterials enabled integrated photo-rechargeable batteries.

Rodriguez-Seco C, Wang Y, Zaghib K, Ma D Nanophotonics. 2024; 11(8):1443-1484.

PMID: 39635284 PMC: 11502093. DOI: 10.1515/nanoph-2021-0782.


Semi-quantitative design of synergetic surficial/interfacial sites for the semi-continuous oxidation of glycerol.

Gao M, Yang P, Zhang X, Zhang Y, Li D, Feng J Fundam Res. 2024; 2(3):412-421.

PMID: 38933400 PMC: 11197512. DOI: 10.1016/j.fmre.2021.07.015.


Molybdenum-Modified Titanium Dioxide Nanotube Arrays as an Efficient Electrode for the Electroreduction of Nitrate to Ammonia.

Chen H, Hu W, Ma T, Pu Y, Wang S, Wang Y Molecules. 2024; 29(12).

PMID: 38930847 PMC: 11206489. DOI: 10.3390/molecules29122782.


References
1.
Oh I, Kye J, Hwang S . Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 2011; 12(1):298-302. DOI: 10.1021/nl203564s. View

2.
Morales-Guio C, Tilley S, Vrubel H, Gratzel M, Hu X . Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun. 2014; 5:3059. DOI: 10.1038/ncomms4059. View

3.
Ji L, McDaniel M, Wang S, Posadas A, Li X, Huang H . A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat Nanotechnol. 2014; 10(1):84-90. DOI: 10.1038/nnano.2014.277. View

4.
Ji L, Hsu H, Li X, Huang K, Zhang Y, Lee J . Localized dielectric breakdown and antireflection coating in metal-oxide-semiconductor photoelectrodes. Nat Mater. 2016; 16(1):127-131. DOI: 10.1038/nmat4801. View

5.
Esposito D, Levin I, Moffat T, Talin A . H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat Mater. 2013; 12(6):562-8. DOI: 10.1038/nmat3626. View