» Articles » PMID: 30177018

Aberrant Glycosylation of the IgA1 Molecule in IgA Nephropathy

Overview
Journal Semin Nephrol
Specialty Nephrology
Date 2018 Sep 5
PMID 30177018
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

IgA nephropathy, the most common primary glomerulonephritis in the world and a frequent cause of end-stage renal disease, is characterized by typical mesangial deposits of IgA1, as described by Berger and Hinglaise in 1968. Since then, it has been discovered that aberrant IgA1 O-glycosylation is involved in disease pathogenesis. Progress in glycomic, genomic, clinical, analytical, and biochemical studies has shown autoimmune features of IgA nephropathy. The autoimmune character of the disease is explained by a multihit pathogenesis model, wherein overproduction of aberrantly glycosylated IgA1, galactose-deficient in some O-glycans, by IgA1-secreting cells leads to increased levels of circulatory galactose-deficient IgA1. These glycoforms induce production of autoantibodies that subsequently bind hinge-region of galactose-deficient IgA1 molecules, resulting in the formation of nephritogenic immune complexes. Some of these complexes deposit in the kidney, activate mesangial cells, and incite glomerular injury. Thus, galactose-deficient IgA1 is central to the disease process. In this article, we review studies concerning IgA1 O-glycosylation that have contributed to the current understanding of the role of IgA1 in the pathogenesis of IgA nephropathy.

Citing Articles

Case report: a rare concurrence of dense deposit disease in an adolescent patient with IgA nephropathy.

Zhang J, Yu H, Chen Y, Chen Q, Zheng X, Luo J BMC Pediatr. 2025; 25(1):47.

PMID: 39833736 PMC: 11744802. DOI: 10.1186/s12887-025-05415-z.


Glycosylation signature of plasma IgA of critically ill COVID-19 patients.

Potaczek D, van Tol B, Falck D, Krolczik C, Zlatina K, Bertrams W Front Immunol. 2024; 15:1439248.

PMID: 39512344 PMC: 11541231. DOI: 10.3389/fimmu.2024.1439248.


My lifetime in IgA nephropathy: An unexpected journey.

Julian B Nephrology (Carlton). 2024; 29 Suppl 2:55-59.

PMID: 39327736 PMC: 11441621. DOI: 10.1111/nep.14341.


Lactobacillus casei Cell Wall Extract and Production of Galactose-Deficient IgA1 in a Humanized IGHA1 Mouse Model.

Li R, Wang M, Li J, Zhu L, Xie X, Wang H J Am Soc Nephrol. 2024; 36(1):60-72.

PMID: 39172518 PMC: 11706567. DOI: 10.1681/ASN.0000000000000465.


O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy.

Novak J, King R, Yother J, Renfrow M, Green T Glycobiology. 2024; 34(11).

PMID: 39095059 PMC: 11442006. DOI: 10.1093/glycob/cwae060.


References
1.
Maillard N, Wyatt R, Julian B, Kiryluk K, Gharavi A, Fremeaux-Bacchi V . Current Understanding of the Role of Complement in IgA Nephropathy. J Am Soc Nephrol. 2015; 26(7):1503-12. PMC: 4483595. DOI: 10.1681/ASN.2014101000. View

2.
Kiryluk K, Novak J . The genetics and immunobiology of IgA nephropathy. J Clin Invest. 2014; 124(6):2325-32. PMC: 4089454. DOI: 10.1172/JCI74475. View

3.
Novak J, Vu H, Novak L, Julian B, Mestecky J, Tomana M . Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int. 2002; 62(2):465-75. DOI: 10.1046/j.1523-1755.2002.00477.x. View

4.
Zeng J, Mi R, Wang Y, Li Y, Lin L, Yao B . Promoters of Human Cosmc and T-synthase Genes Are Similar in Structure, Yet Different in Epigenetic Regulation. J Biol Chem. 2015; 290(31):19018-33. PMC: 4521027. DOI: 10.1074/jbc.M115.654244. View

5.
Pouria S, Barratt J . Secondary IgA nephropathy. Semin Nephrol. 2008; 28(1):27-37. DOI: 10.1016/j.semnephrol.2007.10.004. View