Monguio-Tortajada M, Prat-Vidal C, Martinez-Falguera D, Teis A, Soler-Botija C, Courageux Y
Theranostics. 2022; 12(10):4656-4670.
PMID: 35832072
PMC: 9254233.
DOI: 10.7150/thno.72289.
Wang L, Liu Y, Ye G, He Y, Li B, Guan Y
Nat Biomed Eng. 2021; 5(10):1157-1173.
PMID: 34593988
DOI: 10.1038/s41551-021-00796-9.
Munoz-Dominguez N, Roura S, Prat-Vidal C, Vives J
Pharmaceutics. 2021; 13(9).
PMID: 34575412
PMC: 8471243.
DOI: 10.3390/pharmaceutics13091336.
Hemalatha T, Aarthy M, Pandurangan S, Kamini N, Ayyadurai N
Heart Fail Rev. 2021; 27(4):1443-1467.
PMID: 34342769
DOI: 10.1007/s10741-021-10144-3.
Tenreiro M, Louro A, Alves P, Serra M
NPJ Regen Med. 2021; 6(1):30.
PMID: 34075050
PMC: 8169890.
DOI: 10.1038/s41536-021-00140-4.
Our Journey Through Advanced Therapies to Reduce Post-Infarct Scarring.
Roura S, Monguio-Tortajada M, Prat-Vidal C, Galvez-Monton C, Bayes-Genis A
Stem Cell Rev Rep. 2021; 17(5):1928-1930.
PMID: 34021471
PMC: 8553692.
DOI: 10.1007/s12015-021-10190-2.
Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction.
Monguio-Tortajada M, Prat-Vidal C, Moron-Font M, Clos-Sansalvador M, Calle A, Gastelurrutia P
Bioact Mater. 2021; 6(10):3314-3327.
PMID: 33778207
PMC: 7973387.
DOI: 10.1016/j.bioactmat.2021.02.026.
Milestones and current achievements in development of multifunctional bioscaffolds for medical application.
Litowczenko J, Wozniak-Budych M, Staszak K, Wieszczycka K, Jurga S, Tylkowski B
Bioact Mater. 2021; 6(8):2412-2438.
PMID: 33553825
PMC: 7847813.
DOI: 10.1016/j.bioactmat.2021.01.007.
Xenogeneic and Stem Cell-Based Therapy for Cardiovascular Diseases: Genetic Engineering of Porcine Cells and Their Applications in Heart Regeneration.
Galow A, Goldammer T, Hoeflich A
Int J Mol Sci. 2020; 21(24).
PMID: 33353186
PMC: 7766969.
DOI: 10.3390/ijms21249686.
Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies.
Mazzola M, Di Pasquale E
Front Bioeng Biotechnol. 2020; 8:455.
PMID: 32528940
PMC: 7266938.
DOI: 10.3389/fbioe.2020.00455.
Microencapsulated Insulin-Like Growth Factor-1 therapy improves cardiac function and reduces fibrosis in a porcine acute myocardial infarction model.
Baez-Diaz C, Blanco-Blazquez V, Sanchez-Margallo F, Bayes-Genis A, Gonzalez I, Abad A
Sci Rep. 2020; 10(1):7166.
PMID: 32346015
PMC: 7188803.
DOI: 10.1038/s41598-020-64097-y.
Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges.
Kc P, Hong Y, Zhang G
Regen Biomater. 2019; 6(4):185-199.
PMID: 31404421
PMC: 6683951.
DOI: 10.1093/rb/rbz017.
Nature and Nurture: It Matters for Stem Cells, Too.
Levit R
JACC Basic Transl Sci. 2018; 1(5):373-375.
PMID: 30167525
PMC: 6113411.
DOI: 10.1016/j.jacbts.2016.07.004.
Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing.
Perea-Gil I, Galvez-Monton C, Prat-Vidal C, Jorba I, Segu-Verges C, Roura S
Sci Rep. 2018; 8(1):6708.
PMID: 29712965
PMC: 5928167.
DOI: 10.1038/s41598-018-25115-2.
Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario?.
Roura S, Galvez-Monton C, Mirabel C, Vives J, Bayes-Genis A
Stem Cell Res Ther. 2017; 8(1):238.
PMID: 29078809
PMC: 5658929.
DOI: 10.1186/s13287-017-0695-y.
Designing Acellular Injectable Biomaterial Therapeutics for Treating Myocardial Infarction and Peripheral Artery Disease.
Hernandez M, Christman K
JACC Basic Transl Sci. 2017; 2(2):212-226.
PMID: 29057375
PMC: 5646282.
DOI: 10.1016/j.jacbts.2016.11.008.
Intracoronary Administration of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction.
Bobi J, Solanes N, Fernandez-Jimenez R, Galan-Arriola C, Dantas A, Fernandez-Friera L
J Am Heart Assoc. 2017; 6(5).
PMID: 28468789
PMC: 5524109.
DOI: 10.1161/JAHA.117.005771.