» Articles » PMID: 30155134

Flavoenzyme CrmK-mediated Substrate Recycling in Caerulomycin Biosynthesis

Overview
Journal Chem Sci
Specialty Chemistry
Date 2018 Aug 30
PMID 30155134
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Substrate salvage or recycling is common and important for primary metabolism in cells but is rare in secondary metabolism. Herein we report flavoenzyme CrmK-mediated shunt product recycling in the biosynthesis of caerulomycin A (CRM A ), a 2,2'-bipyridine-containing natural product that is under development as a potent novel immunosuppressive agent. We demonstrated that the alcohol oxidase CrmK, belonging to the family of bicovalent FAD-binding flavoproteins, catalyzed the conversion of an alcohol into a carboxylate an aldehyde. The CrmK-mediated reactions were not to biosynthesis but played an unexpectedly important role by recycling shunt products back to the main pathway of . Crystal structures and site-directed mutagenesis studies uncovered key residues for FAD-binding, substrate binding and catalytic activities, enabling the proposal for the CrmK catalytic mechanism. This study provides the first biochemical and structural evidence for flavoenzyme-mediated substrate recycling in secondary metabolism.

Citing Articles

Biosynthetic Strategies of Berberine Bridge Enzyme-like Flavoprotein Oxidases toward Structural Diversification in Natural Product Biosynthesis.

Tjallinks G, Mattevi A, Fraaije M Biochemistry. 2024; 63(17):2089-2110.

PMID: 39133819 PMC: 11375781. DOI: 10.1021/acs.biochem.4c00320.


Studies on the preparation of aminobipyridines and bipyridine sultams an intramolecular free radical pathway.

Recio J, Filace F, Gala E, Perez-Redondo A, Alvarez-Builla J, Burgos C RSC Adv. 2022; 10(18):10447-10451.

PMID: 35492915 PMC: 9050412. DOI: 10.1039/d0ra02026e.


Structural studies reveal flexible roof of active site responsible for ω-transaminase CrmG overcoming by-product inhibition.

Xu J, Tang X, Zhu Y, Yu Z, Su K, Zhang Y Commun Biol. 2020; 3(1):455.

PMID: 32814814 PMC: 7438487. DOI: 10.1038/s42003-020-01184-w.


Activation and enhancement of caerulomycin A biosynthesis in marine-derived Actinoalloteichus sp. AHMU CJ021 by combinatorial genome mining strategies.

Xie Y, Chen J, Wang B, Chen T, Chen J, Zhang Y Microb Cell Fact. 2020; 19(1):159.

PMID: 32762690 PMC: 7412835. DOI: 10.1186/s12934-020-01418-w.


The Influence of Caerulomycin A on the Intestinal Microbiota in SD Rats.

Zhang H, Lan M, Cui G, Zhu W Mar Drugs. 2020; 18(5).

PMID: 32456087 PMC: 7281470. DOI: 10.3390/md18050277.


References
1.
Zhu Y, Xu J, Mei X, Feng Z, Zhang L, Zhang Q . Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis. ACS Chem Biol. 2015; 11(4):943-52. DOI: 10.1021/acschembio.5b00984. View

2.
Fu P, Wang S, Hong K, Li X, Liu P, Wang Y . Cytotoxic bipyridines from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6. J Nat Prod. 2011; 74(8):1751-6. DOI: 10.1021/np200258h. View

3.
Sekowska A, Danchin A . The methionine salvage pathway in Bacillus subtilis. BMC Microbiol. 2002; 2:8. PMC: 113757. DOI: 10.1186/1471-2180-2-8. View

4.
Mo X, Huang H, Ma J, Wang Z, Wang B, Zhang S . Characterization of TrdL as a 10-hydroxy dehydrogenase and generation of new analogues from a tirandamycin biosynthetic pathway. Org Lett. 2011; 13(9):2212-5. DOI: 10.1021/ol200447h. View

5.
Kaur S, Srivastava G, Sharma A, Jolly R . Novel immunosuppressive agent caerulomycin A exerts its effect by depleting cellular iron content. Br J Pharmacol. 2014; 172(9):2286-99. PMC: 4403094. DOI: 10.1111/bph.13051. View