» Articles » PMID: 30137462

Candidate Genes Linking Maternal Nutrient Exposure to Offspring Health Via DNA Methylation: a Review of Existing Evidence in Humans with Specific Focus on One-carbon Metabolism

Abstract

Background: Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course.

Methods: We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays.

Results: We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review.

Conclusions: Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health.

Citing Articles

The one-carbon metabolism as an underlying pathway for placental DNA methylation - a systematic review.

van Vliet M, Schoenmakers S, Gribnau J, Steegers-Theunissen R Epigenetics. 2024; 19(1):2318516.

PMID: 38484284 PMC: 10950272. DOI: 10.1080/15592294.2024.2318516.


Uncovering the Hidden Dangers and Molecular Mechanisms of Excess Folate: A Narrative Review.

Fardous A, Heydari A Nutrients. 2023; 15(21).

PMID: 37960352 PMC: 10648405. DOI: 10.3390/nu15214699.


The association between prenatal famine, DNA methylation and mental disorders: a systematic review and meta-analysis.

Eichenauer H, Ehlert U Clin Epigenetics. 2023; 15(1):152.

PMID: 37716973 PMC: 10505322. DOI: 10.1186/s13148-023-01557-y.


Periconceptional intakes of methyl donors and other micronutrients involved in one-carbon metabolism may further reduce the risk of neural tube defects in offspring: a United States population-based case-control study of women meeting the folic acid....

Petersen J, Smith-Webb R, Shaw G, Carmichael S, Desrosiers T, Nestoridi E Am J Clin Nutr. 2023; 118(3):720-728.

PMID: 37661108 PMC: 10624769. DOI: 10.1016/j.ajcnut.2023.05.034.


Associations between nutrients in one-carbon metabolism and fetal DNA methylation in pregnancies with or without gestational diabetes mellitus.

Kadam I, Dalloul M, Hausser J, Huntley M, Hoepner L, Fordjour L Clin Epigenetics. 2023; 15(1):137.

PMID: 37633918 PMC: 10464204. DOI: 10.1186/s13148-023-01554-1.


References
1.
Roseboom T, van der Meulen J, van Montfrans G, Ravelli A, Osmond C, Barker D . Maternal nutrition during gestation and blood pressure in later life. J Hypertens. 2001; 19(1):29-34. DOI: 10.1097/00004872-200101000-00004. View

2.
Paquette A, Lester B, Lesseur C, Armstrong D, Guerin D, Appleton A . Placental epigenetic patterning of glucocorticoid response genes is associated with infant neurodevelopment. Epigenomics. 2015; 7(5):767-79. PMC: 4772971. DOI: 10.2217/epi.15.28. View

3.
Huang R, Galati J, Burrows S, Beilin L, Li X, Pennell C . DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults. Clin Epigenetics. 2012; 4(1):21. PMC: 3507742. DOI: 10.1186/1868-7083-4-21. View

4.
Eriksson J, Forsen T, Tuomilehto J, WINTER P, Osmond C, Barker D . Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999; 318(7181):427-31. PMC: 27731. DOI: 10.1136/bmj.318.7181.427. View

5.
Cooper W, Khulan B, Owens S, Elks C, Seidel V, Prentice A . DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J. 2012; 26(5):1782-90. DOI: 10.1096/fj.11-192708. View