» Articles » PMID: 30115915

Symmetry Breakdown of 4,4″-diamino-p-terphenyl on a Cu(111) Surface by Lattice Mismatch

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Aug 18
PMID 30115915
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Site-selective functionalization of only one of two identical chemical groups within one molecule is highly challenging, which hinders the production of complex organic macromolecules. Here we demonstrate that adsorption of 4,4″-diamino-p-terphenyl on a metal surface leads to a dissymmetric binding affinity. With low temperature atomic force microscopy, using CO-tip functionalization, we reveal the asymmetric adsorption geometries of 4,4″-diamino-p-terphenyl on Cu(111), while on Au(111) the symmetry is retained. This symmetry breaking on Cu(111) is caused by a lattice mismatch and interactions with the subsurface atomic layer. The dissymmetry results in a change of the binding affinity of one of the amine groups, leading to a non-stationary behavior under the influence of the scanning tip. Finally, we exploit this dissymmetric binding affinity for on-surface self-assembly with 4,4″-diamino-p-terphenyl for side-preferential attachment of 2-triphenylenecarbaldehyde. Our findings provide a new route towards surface-induced dissymmetric activation of a symmetric compound.

Citing Articles

Site-selective chemical reactions by on-water surface sequential assembly.

Prasoon A, Yu X, Hambsch M, Bodesheim D, Liu K, Zacarias A Nat Commun. 2023; 14(1):8313.

PMID: 38097633 PMC: 10721922. DOI: 10.1038/s41467-023-44129-7.


Chiral and Catalytic Effects of Site-Specific Molecular Adsorption.

Borca B, Michnowicz T, Aguilar-Galindo F, Petuya R, Pristl M, Schendel V J Phys Chem Lett. 2023; 14(8):2072-2077.

PMID: 36799542 PMC: 9986952. DOI: 10.1021/acs.jpclett.2c03575.


Selective activation of four quasi-equivalent C-H bonds yields N-doped graphene nanoribbons with partial corannulene motifs.

Gao Y, Huang L, Cao Y, Richter M, Qi J, Zheng Q Nat Commun. 2022; 13(1):6146.

PMID: 36253383 PMC: 9576682. DOI: 10.1038/s41467-022-33898-2.


Anchoring and Reacting On-Surface to Achieve Programmability.

Li X, Ge H, Xue R, Wu M, Chi L JACS Au. 2022; 2(1):58-65.

PMID: 35098221 PMC: 8790738. DOI: 10.1021/jacsau.1c00397.


Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation.

Zhong Q, Ihle A, Ahles S, Wegner H, Schirmeisen A, Ebeling D Nat Chem. 2021; 13(11):1133-1139.

PMID: 34475530 PMC: 8550974. DOI: 10.1038/s41557-021-00773-4.


References
1.
Zhong D, Franke J, Podiyanachari S, Blomker T, Zhang H, Kehr G . Linear alkane polymerization on a gold surface. Science. 2011; 334(6053):213-6. DOI: 10.1126/science.1211836. View

2.
Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F . Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat Chem. 2012; 4(3):215-20. DOI: 10.1038/nchem.1242. View

3.
Fan Q, Gottfried J, Zhu J . Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc Chem Res. 2015; 48(8):2484-94. DOI: 10.1021/acs.accounts.5b00168. View

4.
Mendez J, Lopez M, Martin-Gago J . On-surface synthesis of cyclic organic molecules. Chem Soc Rev. 2011; 40(9):4578-90. DOI: 10.1039/c0cs00161a. View

5.
Grill L, Dyer M, Lafferentz L, Persson M, Peters M, Hecht S . Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol. 2008; 2(11):687-91. DOI: 10.1038/nnano.2007.346. View