» Articles » PMID: 30103384

Targeting the Microenvironment in High Grade Serous Ovarian Cancer

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2018 Aug 15
PMID 30103384
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer⁻stroma interactions play a key role in cancer progression and response to standard chemotherapy. Here, we provide a summary of the mechanisms by which the major cellular components of the ovarian cancer (OC) tumor microenvironment (TME) including cancer-associated fibroblasts (CAFs), myeloid, immune, endothelial, and mesothelial cells potentiate cancer progression. High-grade serous ovarian cancer (HGSOC) is characterized by a pro-inflammatory and angiogenic signature. This profile is correlated with clinical outcomes and can be a target for therapy. Accumulation of malignant ascites in the peritoneal cavity allows for secreted factors to fuel paracrine and autocrine circuits that augment cancer cell proliferation and invasiveness. Adhesion of cancer cells to the mesothelial matrix promotes peritoneal tumor dissemination and represents another attractive target to prevent metastasis. The immunosuppressed tumor milieu of HGSOC is permissive for tumor growth and can be modulated therapeutically. Results of emerging preclinical and clinical trials testing TME-modulating therapeutics for the treatment of OC are highlighted.

Citing Articles

YKL40/Integrin β4 Axis Induced by the Interaction between Cancer Cells and Tumor-Associated Macrophages Is Involved in the Progression of High-Grade Serous Ovarian Carcinoma.

Yamanaka K, Koma Y, Urakami S, Takahashi R, Nagamata S, Omori M Int J Mol Sci. 2024; 25(19).

PMID: 39408927 PMC: 11477481. DOI: 10.3390/ijms251910598.


Amphiregulin Downregulates E-cadherin Expression by Activating YAP/Egr-1/Slug Signaling in SKOV3 Human Ovarian Cancer Cells.

Jia Q, Wang H, Bi B, Han X, Jia Y, Zhang L Reprod Sci. 2024; 32(2):404-416.

PMID: 39138796 DOI: 10.1007/s43032-024-01673-x.


Targeted therapy in high grade serous ovarian Cancer: A literature review.

Dinkins K, Barton W, Wheeler L, Smith H, Mythreye K, Arend R Gynecol Oncol Rep. 2024; 54:101450.

PMID: 39092168 PMC: 11292514. DOI: 10.1016/j.gore.2024.101450.


Tumor microenvironment-induced FOXM1 regulates ovarian cancer stemness.

Battistini C, Kenny H, Zambuto M, Nieddu V, Melocchi V, Decio A Cell Death Dis. 2024; 15(5):370.

PMID: 38806454 PMC: 11133450. DOI: 10.1038/s41419-024-06767-7.


Residual ANTXR1+ myofibroblasts after chemotherapy inhibit anti-tumor immunity via YAP1 signaling pathway.

Licaj M, Mhaidly R, Kieffer Y, Croizer H, Bonneau C, Meng A Nat Commun. 2024; 15(1):1312.

PMID: 38346978 PMC: 10861537. DOI: 10.1038/s41467-024-45595-3.


References
1.
Matei D, Emerson R, Schilder J, Menning N, Baldridge L, Johnson C . Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis : a Hoosier Oncology Group trial. Cancer. 2008; 113(4):723-32. DOI: 10.1002/cncr.23605. View

2.
Kenny H, Lengyel E . MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell Cycle. 2009; 8(5):683-8. PMC: 2840625. DOI: 10.4161/cc.8.5.7703. View

3.
Giusti I, Di Francesco M, DAscenzo S, Palmerini M, Macchiarelli G, Carta G . Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior. Cancer Biol Ther. 2018; 19(8):722-734. PMC: 6067870. DOI: 10.1080/15384047.2018.1451286. View

4.
Matei D, Graeber T, Baldwin R, Karlan B, Rao J, Chang D . Gene expression in epithelial ovarian carcinoma. Oncogene. 2002; 21(41):6289-98. DOI: 10.1038/sj.onc.1205785. View

5.
Raab-Westphal S, Marshall J, Goodman S . Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel). 2017; 9(9). PMC: 5615325. DOI: 10.3390/cancers9090110. View