» Articles » PMID: 30047222

Visualization and Application of Amino Acid Retention Coefficients Obtained from Modeling of Peptide Retention

Overview
Journal J Sep Sci
Specialty Chemistry
Date 2018 Jul 27
PMID 30047222
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

We introduce a method for data inspection in liquid separations of peptides using amino acid retention coefficients and their relative change across experiments. Our method allows for the direct comparison between actual experimental conditions, regardless of sample content and without the use of internal standards. The modeling uses linear regression of peptide retention time as a function of amino acid composition. We demonstrate the pH dependency of the model in a control experiment where the pH of the mobile phase was changed in controlled way. We introduce a score to identify the false discovery rate on peptide spectrum match level that corresponds to the set of most robust models, i.e. to maximize the shared agreement between experiments. We demonstrate the method utility in reversed-phase liquid chromatography using 24 datasets with minimal peptide overlap. We apply our method on datasets obtained from a public repository representing various separation designs, including one-dimensional reversed-phase liquid chromatography followed by tandem mass spectrometry, and two-dimensional online strong cation exchange coupled to reversed-phase liquid chromatography followed by tandem mass spectrometry, and highlight new insights. Our method provides a simple yet powerful way to inspect data quality, in particular for multidimensional separations, improving comparability of data at no additional experimental cost.

Citing Articles

In-Depth Specificity Profiling of Endopeptidases Using Dedicated Mix-and-Split Synthetic Peptide Libraries and Mass Spectrometry.

Claushuis B, Cordfunke R, de Ru A, Otte A, van Leeuwen H, Klychnikov O Anal Chem. 2023; 95(31):11621-11631.

PMID: 37495545 PMC: 10413326. DOI: 10.1021/acs.analchem.3c01215.


Toward an Integrated Machine Learning Model of a Proteomics Experiment.

Neely B, Dorfer V, Martens L, Bludau I, Bouwmeester R, Degroeve S J Proteome Res. 2023; 22(3):681-696.

PMID: 36744821 PMC: 9990124. DOI: 10.1021/acs.jproteome.2c00711.


Visualization and application of amino acid retention coefficients obtained from modeling of peptide retention.

Mohammed Y, Palmblad M J Sep Sci. 2018; 41(18):3644-3653.

PMID: 30047222 PMC: 6175132. DOI: 10.1002/jssc.201800488.

References
1.
Bodzioch K, Dejaegher B, Baczek T, Kaliszan R, Vander Heyden Y . Evaluation of a generalized use of the log Sum(k+1)AA descriptor in a QSRR model to predict peptide retention on RPLC systems. J Sep Sci. 2009; 32(12):2075-83. DOI: 10.1002/jssc.200900030. View

2.
Chambers M, MacLean B, Burke R, Amodei D, Ruderman D, Neumann S . A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012; 30(10):918-20. PMC: 3471674. DOI: 10.1038/nbt.2377. View

3.
van der Plas-Duivesteijn S, Mohammed Y, Dalebout H, Meijer A, Botermans A, Hoogendijk J . Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues. J Proteome Res. 2014; 13(3):1537-44. DOI: 10.1021/pr4010585. View

4.
Aebersold R, Mann M . Mass spectrometry-based proteomics. Nature. 2003; 422(6928):198-207. DOI: 10.1038/nature01511. View

5.
Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J . Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics. 2012; 12(8):1111-21. PMC: 3918884. DOI: 10.1002/pmic.201100463. View