» Articles » PMID: 30042290

Single-Step Direct Hydrothermal Growth of NiMoO₄ Nanostructured Thin Film on Stainless Steel for Supercapacitor Electrodes

Overview
Date 2018 Jul 26
PMID 30042290
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

We report a facile and direct growth of NiMoO₄ nanostructures on a nonreactive stainless steel substrate using a single-step hydrothermal method and investigated hydrothermal growth duration effects on morphology and electrochemical characteristics. The highest specific capacitances of 341, 619, and 281 F/g were observed for NiMoO₄ with 9, 18, and 27 h growth, respectively, at 1 A/g. Thus, grown samples preserved almost 59% of maximum specific capacitance at a high current density of 10 A/g. All samples exhibited a respectable cycling stability over 3000 charge-discharge operations. NiMoO₄ grown for 18 h exhibited 7200 W/kg peak power density at 14 Wh/kg energy density. Thus, the proposed single-step hydrothermal growth is a promising route to obtain NiMoO₄ nanostructures and other metal oxide electrodes for supercapacitor applications.

Citing Articles

Sophisticated Structural Tuning of NiMoO@MnCoO Nanomaterials for High Performance Hybrid Capacitors.

Di Y, Xiang J, Bu N, Loy S, Yang W, Zhao R Nanomaterials (Basel). 2022; 12(10).

PMID: 35630896 PMC: 9143399. DOI: 10.3390/nano12101674.


The Effect of an External Magnetic Field on the Electrochemical Capacitance of Nanoporous Nickel for Energy Storage.

Zhang H, Han Z, Deng Q Nanomaterials (Basel). 2019; 9(5).

PMID: 31060223 PMC: 6566679. DOI: 10.3390/nano9050694.


Carbon Wrapped Ni₃S₂ Nanocrystals Anchored on Graphene Sheets as Anode Materials for Lithium-Ion Battery and the Study on Their Capacity Evolution.

Guan X, Liu X, Xu B, Liu X, Kong Z, Song M Nanomaterials (Basel). 2018; 8(10).

PMID: 30261632 PMC: 6215149. DOI: 10.3390/nano8100760.

References
1.
Wang H, Gao Q, Jiang L . Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small. 2011; 7(17):2454-9. DOI: 10.1002/smll.201100534. View

2.
Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y . Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Ed Engl. 2003; 42(34):4092-6. DOI: 10.1002/anie.200351691. View

3.
Qu B, Chen Y, Zhang M, Hu L, Lei D, Lu B . β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale. 2012; 4(24):7810-6. DOI: 10.1039/c2nr31902k. View

4.
Simon P, Gogotsi Y . Materials for electrochemical capacitors. Nat Mater. 2008; 7(11):845-54. DOI: 10.1038/nmat2297. View

5.
Zhou L, He Y, Jia C, Pavlinek V, Saha P, Cheng Q . Construction of Hierarchical CuO/Cu₂O@NiCo₂S₄ Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes. Nanomaterials (Basel). 2017; 7(9). PMC: 5618384. DOI: 10.3390/nano7090273. View