» Articles » PMID: 30038907

No Significant Role for Smooth Muscle Cell Mineralocorticoid Receptors in Atherosclerosis in the Apolipoprotein-E Knockout Mouse Model

Overview
Date 2018 Jul 25
PMID 30038907
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Elevated levels of the hormone aldosterone are associated with increased risk of myocardial infarction and stroke in humans and increased progression and inflammation of atherosclerotic plaques in animal models. Aldosterone acts through the mineralocorticoid receptor (MR) which is expressed in vascular smooth muscle cells (SMCs) where it promotes SMC calcification and chemokine secretion . The objective of this study is to explore the role of the MR specifically in SMCs in the progression of atherosclerosis and the associated vascular inflammation in the apolipoprotein E knockout (ApoE) mouse model. Male ApoE mice were bred with mice in which MR could be deleted specifically from SMCs by tamoxifen injection. The resulting atheroprone SMC-MR-KO mice were compared to their MR-Intact littermates after high fat diet (HFD) feeding for 8 or 16 weeks or normal diet for 12 months. Body weight, tail cuff blood pressure, heart and spleen weight, and serum levels of glucose, cholesterol, and aldosterone were measured for all mice at the end of the treatment period. Serial histologic sections of the aortic root were stained with Oil Red O to assess plaque size, lipid content, and necrotic core area; with PicroSirius Red for quantification of collagen content; by immunofluorescent staining with anti-Mac2/Galectin-3 and anti-smooth muscle α-actin antibodies to assess inflammation and SMC marker expression; and with Von Kossa stain to detect plaque calcification. In the 16-week HFD study, these analyses were also performed in sections from the brachiocephalic artery. Flow cytometry of cell suspensions derived from the aortic arch was also performed to quantify vascular inflammation after 8 and 16 weeks of HFD. Deletion of the MR specifically from SMCs did not significantly change plaque size, lipid content, necrotic core, collagen content, inflammatory staining, actin staining, or calcification, nor were there differences in the extent of vascular inflammation between MR-Intact and SMC-MR-KO mice in the three experiments. SMC-MR does not directly contribute to the formation, progression, or inflammation of atherosclerotic plaques in the ApoE mouse model of atherosclerosis. This indicates that the MR in non-SMCs mediates the pro-atherogenic effects of MR activation.

Citing Articles

Prior Exposure to Experimental Preeclampsia Increases Atherosclerotic Plaque Inflammation in Atherogenic Mice-Brief Report.

Biwer L, Man J, Camarda N, Carvajal B, Karumanchi S, Jaffe I Arterioscler Thromb Vasc Biol. 2024; 44(4):946-953.

PMID: 38450510 PMC: 10978246. DOI: 10.1161/ATVBAHA.123.320474.


Macrophage-specific deletion of Notch-1 induced M2 anti-inflammatory effect in atherosclerosis via activation of the PI3K-oxidative stress axis.

Zhang M, Yue X, Zhao X, Lu Y, Liu H, Zhang Z Aging (Albany NY). 2023; 15(24):15196-15212.

PMID: 38149979 PMC: 10781475. DOI: 10.18632/aging.205342.


Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone.

Xu C Endocrine. 2023; 83(2):285-301.

PMID: 37847370 DOI: 10.1007/s12020-023-03566-6.


Multi-omic analysis of the cardiac cellulome defines a vascular contribution to cardiac diastolic dysfunction in obese female mice.

Dona M, Hsu I, Meuth A, Brown S, Bailey C, Aragonez C Basic Res Cardiol. 2023; 118(1):11.

PMID: 36988733 PMC: 10060343. DOI: 10.1007/s00395-023-00983-6.


Emerging vascular cell-specific roles for mineralocorticoid receptor: implications for understanding sex differences in cardiovascular disease.

Wolter N, Jaffe I Am J Physiol Cell Physiol. 2022; 324(1):C193-C204.

PMID: 36440858 PMC: 9902217. DOI: 10.1152/ajpcell.00372.2022.


References
1.
Soufi M, Sattler A, Herzum M, Maisch B, Schaefer J . Molecular basis of obesity and the risk for cardiovascular disease. Herz. 2006; 31(3):200-6. DOI: 10.1007/s00059-006-2801-2. View

2.
Rosenfeld M, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz S . Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol. 2000; 20(12):2587-92. DOI: 10.1161/01.atv.20.12.2587. View

3.
Brown N . Aldosterone and vascular inflammation. Hypertension. 2008; 51(2):161-7. DOI: 10.1161/HYPERTENSIONAHA.107.095489. View

4.
Shen Z, Chen X, Sun X, Sun J, Zhang W, Zheng X . Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Atherosclerosis by Affecting Foam Cell Formation and Efferocytosis. J Biol Chem. 2016; 292(3):925-935. PMC: 5247664. DOI: 10.1074/jbc.M116.739243. View

5.
Ishizawa K, Izawa Y, Ito H, Miki C, Miyata K, Fujita Y . Aldosterone stimulates vascular smooth muscle cell proliferation via big mitogen-activated protein kinase 1 activation. Hypertension. 2005; 46(4):1046-52. DOI: 10.1161/01.HYP.0000172622.51973.f5. View