» Articles » PMID: 30036124

Haemophilus Parasuis α-2,3-sialyltransferase-mediated Lipooligosaccharide Sialylation Contributes to Bacterial Pathogenicity

Overview
Journal Virulence
Specialty Microbiology
Date 2018 Jul 24
PMID 30036124
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial lipooligosaccharide (LOS) is an important virulence-associated factor, and its sialylation largely confers its ability to mediate cell adhesion, invasion, inflammation, and immune evasion. Here, we investigated the function of the Haemophilus parasuis α-2,3-sialyltransferase gene, lsgB, which determines the terminal sialylation of LOS, by generating a lsgB deletion mutant as well as a complementation strain. Our data indicate a direct effect of lsgB on LOS sialylation and reveal important roles of lsgB in promoting the pathogenicity of H. parasuis, including adhesion to and invasion of porcine cells in vitro, bacterial load and survival in vivo, as well as a contribution to serum resistance. These observations highlight the function of lsgB in mediating LOS sialylation and more importantly its role in H. parasuis infection. These findings provide a more profound understanding of the pathogenic mechanism of this disease-causing bacterium.

Citing Articles

Research progress on vaccines.

Duan Y, Hao Y, Feng H, Shu J, He Y Front Vet Sci. 2025; 12:1492144.

PMID: 40007746 PMC: 11851532. DOI: 10.3389/fvets.2025.1492144.


A marker-free genetic manipulation method for Glaesserella parasuis strains developed by alternately culturing transformants at 37°C and 30°C.

Xiao J, Wang Y, Wu D, Song Y, Cai X, Chen H BMC Biotechnol. 2024; 24(1):60.

PMID: 39227838 PMC: 11373133. DOI: 10.1186/s12896-024-00887-w.


Genomic insight into the diversity of isolates from 19 countries.

Gong X, Cui Q, Zhang W, Shi Y, Zhang P, Zhang C mSphere. 2024; 9(9):e0023124.

PMID: 39194201 PMC: 11423579. DOI: 10.1128/msphere.00231-24.


A comparative study of the substrate preference of the sialidases, CpNanI, HpNanH, and BbSia2 towards 2-Aminobenzamide-labeled 3'-Sialyllactose, 6'-Sialyllactose, and Sialyllacto-N-tetraose-b.

Lata M, Ramya T Biochem Biophys Rep. 2024; 39:101791.

PMID: 39156723 PMC: 11326918. DOI: 10.1016/j.bbrep.2024.101791.


Glycosphingolipids: from metabolism to chemoenzymatic total synthesis.

Bonab M, Guo Z, Li Q Org Biomol Chem. 2024; 22(33):6665-6683.

PMID: 39120686 PMC: 11341264. DOI: 10.1039/d4ob00695j.


References
1.
Pomorska-Mol M, Dors A, Kwit K, Czyzewska-Dors E, Pejsak Z . Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. BMC Vet Res. 2017; 13(1):376. PMC: 5716233. DOI: 10.1186/s12917-017-1298-7. View

2.
Martinez-Moliner V, Soler-Llorens P, Moleres J, Garmendia J, Aragon V . Distribution of genes involved in sialic acid utilization in strains of Haemophilus parasuis. Microbiology (Reading). 2012; 158(Pt 8):2117-2124. DOI: 10.1099/mic.0.056994-0. View

3.
Lichtensteiger C, Vimr E . Neuraminidase (sialidase) activity of Haemophilus parasuis. FEMS Microbiol Lett. 1997; 152(2):269-74. DOI: 10.1111/j.1574-6968.1997.tb10438.x. View

4.
Stencel-Baerenwald J, Reiss K, Reiter D, Stehle T, Dermody T . The sweet spot: defining virus-sialic acid interactions. Nat Rev Microbiol. 2014; 12(11):739-49. PMC: 4791167. DOI: 10.1038/nrmicro3346. View

5.
Labandeira-Rey M, Brautigam C, Hansen E . Characterization of the CpxRA regulon in Haemophilus ducreyi. Infect Immun. 2010; 78(11):4779-91. PMC: 2976327. DOI: 10.1128/IAI.00678-10. View