» Articles » PMID: 30028071

Nrf2 Stabilization Prevents Critical Oxidative Damage in Down Syndrome Cells

Overview
Journal Aging Cell
Specialties Cell Biology
Geriatrics
Date 2018 Jul 21
PMID 30028071
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Mounting evidence implicates chronic oxidative stress as a critical driver of the aging process. Down syndrome (DS) is characterized by a complex phenotype, including early senescence. DS cells display increased levels of reactive oxygen species (ROS) and mitochondrial structural and metabolic dysfunction, which are counterbalanced by sustained Nrf2-mediated transcription of cellular antioxidant response elements (ARE). Here, we show that caspase 3/PKCδdependent activation of the Nrf2 pathway in DS and Dp16 (a mouse model of DS) cells is necessary to protect against chronic oxidative damage and to preserve cellular functionality. Mitochondria-targeted catalase (mCAT) significantly reduced oxidative stress, restored mitochondrial structure and function, normalized replicative and wound healing capacity, and rendered the Nrf2-mediated antioxidant response dispensable. These results highlight the critical role of Nrf2/ARE in the maintenance of DS cell homeostasis and validate mitochondrial-specific interventions as a key aspect of antioxidant and antiaging therapies.

Citing Articles

Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2.

Buttari B, Tramutola A, Rojo A, Chondrogianni N, Saha S, Berry A Biomolecules. 2025; 15(1).

PMID: 39858508 PMC: 11764413. DOI: 10.3390/biom15010113.


Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon?.

Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A Antioxidants (Basel). 2024; 13(10).

PMID: 39456502 PMC: 11505147. DOI: 10.3390/antiox13101249.


Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury.

Xiao C, Lai H, Zhou J, Liu W, Zhao M, Zhao K Mol Neurobiol. 2024; 62(2):2230-2249.

PMID: 39093381 DOI: 10.1007/s12035-024-04394-z.


A dynamic in vitro model of Down syndrome neurogenesis with trisomy 21 gene dosage correction.

Bansal P, Banda E, Glatt-Deeley H, Stoddard C, Linsley J, Arora N Sci Adv. 2024; 10(23):eadj0385.

PMID: 38848354 PMC: 11160455. DOI: 10.1126/sciadv.adj0385.


The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration.

Da W, Chen Q, Shen B Biol Res. 2024; 57(1):37.

PMID: 38824571 PMC: 11143644. DOI: 10.1186/s40659-024-00494-1.


References
1.
Rodier F, Campisi J . Four faces of cellular senescence. J Cell Biol. 2011; 192(4):547-56. PMC: 3044123. DOI: 10.1083/jcb.201009094. View

2.
Stempka L, Schnolzer M, Radke S, Rincke G, Marks F, Gschwendt M . Requirements of protein kinase cdelta for catalytic function. Role of glutamic acid 500 and autophosphorylation on serine 643. J Biol Chem. 1999; 274(13):8886-92. DOI: 10.1074/jbc.274.13.8886. View

3.
Busciglio J, Yankner B . Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature. 1995; 378(6559):776-9. DOI: 10.1038/378776a0. View

4.
Yu T, Liu C, Belichenko P, Clapcote S, Li S, Pao A . Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice. Brain Res. 2010; 1366:162-71. PMC: 3027718. DOI: 10.1016/j.brainres.2010.09.107. View

5.
Xu J . Preparation, culture, and immortalization of mouse embryonic fibroblasts. Curr Protoc Mol Biol. 2008; Chapter 28:Unit 28.1. DOI: 10.1002/0471142727.mb2801s70. View