» Articles » PMID: 30015618

Adaptation to Constant Light Requires Fic-mediated AMPylation of BiP to Protect Against Reversible Photoreceptor Degeneration

Overview
Journal Elife
Specialty Biology
Date 2018 Jul 18
PMID 30015618
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

In response to environmental, developmental, and pathological stressors, cells engage homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein Response protects cells from the accumulation of misfolded proteins in the ER. Depending on ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the major ER chaperone and regulator of the Unfolded Protein Response. This work elucidates the importance of the reversible AMPylation of BiP in maintaining the visual system in response to stress. After 72 hr of constant light, photoreceptors of -null and AMPylation-resistant mutants, but not wild-type flies, display loss of synaptic function, disintegration of rhabdomeres, and excessive activation of ER stress reporters. Strikingly, this phenotype is reversible: photoreceptors regain their structure and function within 72 hr once returned to a standard light:dark cycle. These findings show that Fic-mediated AMPylation of BiP is required for neurons to adapt to transient stress demands.

Citing Articles

Exploring the Role of , a New Potential Gene Involved in Borderline Intellectual Functioning, Psychological and Metabolic Disorders.

Vinci M, Greco D, Figura M, Treccarichi S, Musumeci A, Greco V Genes (Basel). 2025; 15(12.

PMID: 39766922 PMC: 11727805. DOI: 10.3390/genes15121655.


FicD sensitizes cellular response to glucose fluctuations in mouse embryonic fibroblasts.

Gulen B, Blevins A, Kinch L, Servage K, Stewart N, Gray H Proc Natl Acad Sci U S A. 2024; 121(38):e2400781121.

PMID: 39259589 PMC: 11420183. DOI: 10.1073/pnas.2400781121.


Small molecule FICD inhibitors suppress endogenous and pathologic FICD-mediated protein AMPylation.

Chatterjee B, Alam M, Chakravorty A, Lacy S, Rech J, Brooks 3rd C bioRxiv. 2024; .

PMID: 39071275 PMC: 11275912. DOI: 10.1101/2024.07.13.603377.


Loss of Fic causes progressive neurodegeneration in a Drosophila model of hereditary spastic paraplegia.

Lobato A, Ortiz-Vega N, Canic T, Tao X, Bucan N, Ruan K Biochim Biophys Acta Mol Basis Dis. 2024; 1870(7):167348.

PMID: 38986817 PMC: 11549967. DOI: 10.1016/j.bbadis.2024.167348.


Eye proteome of Drosophila melanogaster.

Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M Proteomics. 2023; 24(10):e2300330.

PMID: 37963819 PMC: 11258641. DOI: 10.1002/pmic.202300330.


References
1.
Webel R, Menon I, OTousa J, Colley N . Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA. J Biol Chem. 2000; 275(32):24752-9. DOI: 10.1074/jbc.M002668200. View

2.
Bertolotti A, Zhang Y, Hendershot L, Harding H, Ron D . Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000; 2(6):326-32. DOI: 10.1038/35014014. View

3.
Kiselev A, Socolich M, Vinos J, Hardy R, Zuker C, Ranganathan R . A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron. 2000; 28(1):139-52. DOI: 10.1016/s0896-6273(00)00092-1. View

4.
Lee S, Montell C . Regulation of the rhodopsin protein phosphatase, RDGC, through interaction with calmodulin. Neuron. 2002; 32(6):1097-106. DOI: 10.1016/s0896-6273(01)00538-4. View

5.
Kalidas S, Smith D . Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron. 2002; 33(2):177-84. DOI: 10.1016/s0896-6273(02)00560-3. View