» Articles » PMID: 30004421

Light Chain Diversity Among the Botulinum Neurotoxins

Overview
Journal Toxins (Basel)
Publisher MDPI
Specialty Toxicology
Date 2018 Jul 14
PMID 30004421
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Botulinum neurotoxins (BoNT) are produced by several species of clostridium. There are seven immunologically unique BoNT serotypes (A⁻G). The Centers for Disease Control classifies BoNTs as 'Category A' select agents and are the most lethal protein toxins for humans. Recently, BoNT-like proteins have also been identified in several non-clostridia. BoNTs are di-chain proteins comprised of an -terminal zinc metalloprotease Light Chain (LC) and a C-terminal Heavy Chain (HC) which includes the translocation and receptor binding domains. The two chains are held together by a disulfide bond. The LC cleaves Soluble -ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The cleavage of SNAREs inhibits the fusion of synaptic vesicles to the cell membrane and the subsequent release of acetylcholine, which results in flaccid paralysis. The LC controls the catalytic properties and the duration of BoNT action. This review discusses the mechanism for LC catalysis, LC translocation, and the basis for the duration of LC action. Understanding these properties of the LC may expand the applications of BoNT as human therapies.

Citing Articles

Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications.

Rasetti-Escargueil C, Palea S Toxins (Basel). 2024; 16(6).

PMID: 38922155 PMC: 11209287. DOI: 10.3390/toxins16060261.


A DARPin promotes faster onset of botulinum neurotoxin A1 action.

Leka O, Wu Y, Zanetti G, Furler S, Reinberg T, Marinho J Nat Commun. 2023; 14(1):8317.

PMID: 38110403 PMC: 10728214. DOI: 10.1038/s41467-023-44102-4.


Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines.

Gupta S, Pellett S Toxins (Basel). 2023; 15(9).

PMID: 37755989 PMC: 10536331. DOI: 10.3390/toxins15090563.


Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from : Potential Insights into Substrate Recognition.

Gregory K, Hall P, Onuh J, Mojanaga O, Liu S, Acharya K Int J Mol Sci. 2023; 24(16).

PMID: 37628902 PMC: 10454453. DOI: 10.3390/ijms241612721.


Biological and Immunological Characterization of a Functional L-HN Derivative of Botulinum Neurotoxin Serotype F.

Li Z, Li B, Lu J, Liu X, Tan X, Wang R Toxins (Basel). 2023; 15(3).

PMID: 36977091 PMC: 10056376. DOI: 10.3390/toxins15030200.


References
1.
Yamasaki S, Hu Y, Binz T, Kalkuhl A, Kurazono H, Tamura T . Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc Natl Acad Sci U S A. 1994; 91(11):4688-92. PMC: 43853. DOI: 10.1073/pnas.91.11.4688. View

2.
Sikorra S, Litschko C, Muller C, Thiel N, Galli T, Eichner T . Identification and Characterization of Botulinum Neurotoxin A Substrate Binding Pockets and Their Re-Engineering for Human SNAP-23. J Mol Biol. 2015; 428(2 Pt A):372-384. DOI: 10.1016/j.jmb.2015.10.024. View

3.
Lacy D, Tepp W, Cohen A, Dasgupta B, Stevens R . Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998; 5(10):898-902. DOI: 10.1038/2338. View

4.
Rummel A . Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol. 2012; 364:61-90. DOI: 10.1007/978-3-642-33570-9_4. View

5.
Jahn R, Scheller R . SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol. 2006; 7(9):631-43. DOI: 10.1038/nrm2002. View