» Articles » PMID: 29997810

Size Controllable Redispersion of Sintered Au Nanoparticles by Using Iodohydrocarbon and Its Implications

Overview
Journal Chem Sci
Specialty Chemistry
Date 2018 Jul 13
PMID 29997810
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Downsizing large Au particles into small particles with controllable size remains challenging. In this study, we redispersed large sintered Au particles on activated carbon (Au/C) to highly dispersed nanoparticles with uniform distribution and controllable size after treatment with iodohydrocarbons. The Au/C catalyst was conducted for a number of deactivation/regeneration cycles with negligible deterioration in catalytic performance for acetylene hydrochlorination. The redispersion behavior reveals a reverse agglomeration process in the presence of iodohydrocarbons under mild conditions. This behavior is significantly related to the C-I bond dissociation energy (BDE) and adsorption of iodic species on Au particles. A novel protocol for controlling the size and predicting the redispersion efficiency of Au particles is established by correlating with the C-I BDEs of iodohydrocarbons. The molecular-level interpretation of redispersion provides a thorough mechanism based on experimental results. This study presents an efficient method for the easy regeneration of sintered Au-based catalysts for practical applications.

Citing Articles

Role of Transition Metal Dichalcogenides as a Catalyst Support for Decorating Gold Nanoparticles for Enhanced Hydrogen Evolution Reaction.

Saeloo B, Saisopa T, Chavalekvirat P, Iamprasertkun P, Jitapunkul K, Sirisaksoontorn W Inorg Chem. 2024; 63(40):18750-18762.

PMID: 39327994 PMC: 11462500. DOI: 10.1021/acs.inorgchem.4c02668.


Gold nanoparticles synthesis and immobilization by atmospheric pressure DBD plasma torch method.

Bjelajac A, Phillipe A, Guillot J, Fleming Y, Chemin J, Choquet P Nanoscale Adv. 2023; 5(9):2573-2582.

PMID: 37143807 PMC: 10153074. DOI: 10.1039/d3na00007a.


Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity.

Giulimondi V, Kaiser S, Agrachev M, Krumeich F, Clark A, Mitchell S J Mater Chem A Mater. 2022; 10(11):5953-5961.

PMID: 35401984 PMC: 8922557. DOI: 10.1039/d1ta09238c.


Precisely Engineered Supported Gold Clusters as a Stable Catalyst for Propylene Epoxidation.

Kapil N, Weissenberger T, Cardinale F, Trogadas P, Nijhuis T, Nigra M Angew Chem Int Ed Engl. 2021; 60(33):18185-18193.

PMID: 34085370 PMC: 8456944. DOI: 10.1002/anie.202104952.


In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles.

Feng S, Song X, Liu Y, Lin X, Yan L, Liu S Nat Commun. 2019; 10(1):5281.

PMID: 31754128 PMC: 6872874. DOI: 10.1038/s41467-019-12965-1.


References
1.
Sa J, Goguet A, Taylor S, Tiruvalam R, Kiely C, Nachtegaal M . Influence of methyl halide treatment on gold nanoparticles supported on activated carbon. Angew Chem Int Ed Engl. 2011; 50(38):8912-6. DOI: 10.1002/anie.201102066. View

2.
Choi H, Shim M, Bangsaruntip S, Dai H . Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc. 2002; 124(31):9058-9. DOI: 10.1021/ja026824t. View

3.
Crawford M, Klapotke T . Hydrides and iodides of gold. Angew Chem Int Ed Engl. 2002; 41(13):2269-71. DOI: 10.1002/1521-3773(20020703)41:13<2269::AID-ANIE2269>3.0.CO;2-G. View

4.
Chai J, Liao X, Giam L, Mirkin C . Nanoreactors for studying single nanoparticle coarsening. J Am Chem Soc. 2012; 134(1):158-61. DOI: 10.1021/ja2097964. View

5.
Banerjee A, Theron R, Scott R . Redispersion of transition metal nanoparticle catalysts in tetraalkylphosphonium ionic liquids. Chem Commun (Camb). 2013; 49(31):3227-9. DOI: 10.1039/c3cc40726h. View