» Articles » PMID: 29997807

High Yielding Synthesis of 2,2'-bipyridine Macrocycles, Versatile Intermediates in the Synthesis of Rotaxanes

Overview
Journal Chem Sci
Specialty Chemistry
Date 2018 Jul 13
PMID 29997807
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

We present an operationally simple approach to 2,2'-bipyridine macrocycles. Our method uses simple starting materials to produce these previously hard to access rotaxane precursors in remarkable yields (typically >65%) across a range of scales (0.1-5 mmol). All of the macrocycles reported are efficiently converted (>90%) to rotaxanes under AT-CuAAC conditions. With the requisite macrocycles finally available in sufficient quantities, we further demonstrate their long term utility through the first gram-scale synthesis of an AT-CuAAC [2]rotaxane and extend this powerful methodology to produce novel Sauvage-type molecular shuttles.

Citing Articles

Multimodal Molecular Motion in the Rotaxanes and Catenanes Incorporating Flexible Calix[n]phyrin Stations.

Grzelczak R, Basak T, Trzaskowski B, Kinzhybalo V, Szyszko B Angew Chem Int Ed Engl. 2024; 64(1):e202413579.

PMID: 39190832 PMC: 11701352. DOI: 10.1002/anie.202413579.


The End of the Beginning of Mechanical Stereochemistry.

Goldup S Acc Chem Res. 2024; 57(12):1696-1708.

PMID: 38830116 PMC: 11191403. DOI: 10.1021/acs.accounts.4c00195.


The Final Stereogenic Unit of [2]Rotaxanes: Type 2 Geometric Isomers.

Savoini A, Gallagher P, Saady A, Goldup S J Am Chem Soc. 2024; 146(12):8472-8479.

PMID: 38499387 PMC: 10979452. DOI: 10.1021/jacs.3c14594.


Dynamic mechanostereochemical switching of a co-conformationally flexible [2]catenane controlled by specific ionic guests.

Yao Y, Tse Y, Kin-Man Lai S, Shi Y, Low K, Au-Yeung H Nat Commun. 2024; 15(1):1952.

PMID: 38433258 PMC: 10909852. DOI: 10.1038/s41467-024-46099-w.


Direct Detection of Hydrogen Bonds in Supramolecular Systems Using H-N Heteronuclear Multiple Quantum Coherence Spectroscopy.

Jinks M, Howard M, Rizzi F, Goldup S, Burnett A, Wilson A J Am Chem Soc. 2022; 144(50):23127-23133.

PMID: 36508201 PMC: 9782782. DOI: 10.1021/jacs.2c10742.


References
1.
Obata M, Kitamura A, Mori A, Kameyama C, Czaplewska J, Tanaka R . Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. Dalton Trans. 2008; (25):3292-300. DOI: 10.1039/b718538c. View

2.
Schulze B, Schubert U . Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles. Chem Soc Rev. 2014; 43(8):2522-71. DOI: 10.1039/c3cs60386e. View

3.
Campbell C, Leigh D, Vitorica-Yrezabal I, Woltering S . A simple and highly effective ligand system for the copper(I)-mediated assembly of rotaxanes. Angew Chem Int Ed Engl. 2014; 53(50):13771-4. PMC: 4502974. DOI: 10.1002/anie.201407817. View

4.
Blanco V, Carlone A, Hanni K, Leigh D, Lewandowski B . A rotaxane-based switchable organocatalyst. Angew Chem Int Ed Engl. 2012; 51(21):5166-9. DOI: 10.1002/anie.201201364. View

5.
Galli M, Lewis J, Goldup S . A Stimuli-Responsive Rotaxane-Gold Catalyst: Regulation of Activity and Diastereoselectivity. Angew Chem Int Ed Engl. 2015; 54(46):13545-9. PMC: 4678423. DOI: 10.1002/anie.201505464. View