» Articles » PMID: 29994628

Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks

Overview
Date 2018 Jul 12
PMID 29994628
Citations 148
Authors
Affiliations
Soon will be listed here.
Abstract

Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the gastrointestinal tract (esophagus, stomach, and duodenum) and surrounding organs (liver, spleen, left kidney, and gallbladder). We directly compared the segmentation accuracy of the proposed method to the existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 versus 0.71, 0.74, and 0.74 for the pancreas, 0.90 versus 0.85, 0.87, and 0.83 for the stomach, and 0.76 versus 0.68, 0.69, and 0.66 for the esophagus. We conclude that the deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures.

Citing Articles

Systematic Review: AI Applications in Liver Imaging with a Focus on Segmentation and Detection.

Pomohaci M, Grasu M, Baicoianu-Nitescu A, Enache R, Lupescu I Life (Basel). 2025; 15(2).

PMID: 40003667 PMC: 11856300. DOI: 10.3390/life15020258.


Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation.

Wang H, Wu G, Liu Y J Imaging. 2025; 11(1.

PMID: 39852332 PMC: 11766170. DOI: 10.3390/jimaging11010019.


A multi-modal multi-branch framework for retinal vessel segmentation using ultra-widefield fundus photographs.

Xie Q, Li X, Li Y, Lu J, Ma S, Zhao Y Front Cell Dev Biol. 2025; 12():1532228.

PMID: 39845080 PMC: 11751237. DOI: 10.3389/fcell.2024.1532228.


Automated Deep Learning-Based Detection and Segmentation of Lung Tumors at CT.

Kashyap M, Wang X, Panjwani N, Hasan M, Zhang Q, Huang C Radiology. 2025; 314(1):e233029.

PMID: 39835976 PMC: 11783160. DOI: 10.1148/radiol.233029.


Robust Automated Mouse Micro-CT Segmentation Using Swin UNEt TRansformers.

Jiang L, Xu D, Xu Q, Chatziioannou A, Iwamoto K, Hui S Bioengineering (Basel). 2025; 11(12.

PMID: 39768073 PMC: 11673508. DOI: 10.3390/bioengineering11121255.


References
1.
Wang H, Suh J, Das S, Pluta J, Craige C, Yushkevich P . Multi-Atlas Segmentation with Joint Label Fusion. IEEE Trans Pattern Anal Mach Intell. 2012; 35(3):611-23. PMC: 3864549. DOI: 10.1109/TPAMI.2012.143. View

2.
Lombaert H, Zikic D, Criminisi A, Ayache N . Laplacian forests: semantic image segmentation by guided bagging. Med Image Comput Comput Assist Interv. 2014; 17(Pt 2):496-504. DOI: 10.1007/978-3-319-10470-6_62. View

3.
Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D . Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg. 2016; 12(3):399-411. DOI: 10.1007/s11548-016-1501-5. View

4.
Shelhamer E, Long J, Darrell T . Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2016; 39(4):640-651. DOI: 10.1109/TPAMI.2016.2572683. View

5.
Okada T, Linguraru M, Hori M, Summers R, Tomiyama N, Sato Y . Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med Image Anal. 2015; 26(1):1-18. PMC: 4679509. DOI: 10.1016/j.media.2015.06.009. View