» Articles » PMID: 29985356

Analysis of Minerals Produced by HFOB 1.19 and Saos-2 Cells Using Transmission Electron Microscopy with Energy Dispersive X-ray Microanalysis

Overview
Journal J Vis Exp
Date 2018 Jul 10
PMID 29985356
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

This video presents the use of transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) to compare the state of minerals in vesicles released by two human bone cell lines: hFOB 1.19 and Saos-2. These cell lines, after treatment with ascorbic acid (AA) and β-glycerophosphate (β-GP), undergo complete osteogenic transdifferentiation from proliferation to mineralization and produce matrix vesicles (MVs) that trigger apatite nucleation in the extracellular matrix (ECM). Based on Alizarin Red-S (AR-S) staining and analysis of the composition of minerals in cell lysates using ultraviolet (UV) light or in vesicles using TEM imaging followed by EDX quantitation and ion mapping, we can infer that osteosarcoma Saos-2 and osteoblastic hFOB 1.19 cells reveal distinct mineralization profiles. Saos-2 cells mineralize more efficiently than hFOB 1.19 cells and produce larger mineral deposits that are not visible under UV light but are similar to hydroxyapatite (HA) in that they have more Ca and F substitutions. The results obtained using these techniques allow us to conclude that the process of mineralization differs depending on the cell type. We propose that, at the cellular level, the origin and properties of vesicles predetermine the type of minerals.

Citing Articles

Aggregation of human osteoblasts unlocks self-reliant differentiation and constitutes a microenvironment for 3D-co-cultivation with other bone marrow cells.

Marozin S, Simon-Nobbe B, Huth A, Beyerer E, Weber L, Nussler A Sci Rep. 2024; 14(1):10345.

PMID: 38710795 PMC: 11074281. DOI: 10.1038/s41598-024-60986-8.


Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles?.

Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G Biomolecules. 2024; 14(1).

PMID: 38254642 PMC: 10813234. DOI: 10.3390/biom14010042.


Apigenin Modulates AnxA6- and TNAP-Mediated Osteoblast Mineralization.

Mroczek J, Pikula S, Suski S, Weremiejczyk L, Biesaga M, Strzelecka-Kiliszek A Int J Mol Sci. 2022; 23(21).

PMID: 36361965 PMC: 9658728. DOI: 10.3390/ijms232113179.


Long non-coding RNA PGM5-AS1 promotes epithelial-mesenchymal transition, invasion and metastasis of osteosarcoma cells by impairing miR-140-5p-mediated FBN1 inhibition.

Liu W, Liu P, Gao H, Wang X, Yan M Mol Oncol. 2020; 14(10):2660-2677.

PMID: 32412676 PMC: 7530781. DOI: 10.1002/1878-0261.12711.

References
1.
Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand M . Ion exchanges in apatites for biomedical application. J Mater Sci Mater Med. 2005; 16(5):405-9. DOI: 10.1007/s10856-005-6979-2. View

2.
Boonrungsiman S, Gentleman E, Carzaniga R, Evans N, McComb D, Porter A . The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A. 2012; 109(35):14170-5. PMC: 3435222. DOI: 10.1073/pnas.1208916109. View

3.
Wang W, Xu J, Kirsch T . Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem. 2002; 278(6):3762-9. DOI: 10.1074/jbc.M208868200. View

4.
Wang W, Xu J, Kirsch T . Annexin V and terminal differentiation of growth plate chondrocytes. Exp Cell Res. 2005; 305(1):156-65. DOI: 10.1016/j.yexcr.2004.12.022. View

5.
Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W . Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2005; 24(6):3743-8. View