» Articles » PMID: 29980752

Gestational Exposure to Chlordecone Promotes Transgenerational Changes in the Murine Reproductive System of Males

Overview
Journal Sci Rep
Specialty Science
Date 2018 Jul 8
PMID 29980752
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Environmental factors can affect epigenetic events during germline reprogramming and impose distinctive transgenerational consequences onto the offspring. In this study, we examined the transgenerational effects of chlordecone (CD), an organochlorine insecticide with well-known estrogenic properties. We exposed pregnant mice to CD from embryonic day 6.5 to 15.5 and observed a reduction in spermatogonia (SG) numbers in F3, meiotic defects in spermatocytes and decrease in spermatozoa number in the first and third generation of male progeny. The RNA qRT-PCR expression analysis in F1 and transcriptomics analysis in F3 males using the whole testes revealed changes in the expression of genes associated with chromosome segregation, cell division and DNA repair. The expression of the master regulator of pluripotency, Pou5f1, decreased in foetal and increased in adult F1, but not in F3 adult testes. Analysis of histone H3K4me3 distribution revealed widespread changes in its occupancy in the genome of F1 and F3 generations. We established that 7.1% of altered epigenetic marks were conserved between F1 and F3 generations. The overlapping changes common to F1 and F3 include genes implicated in cell adhesion and transcription factor activities functions. Differential peaks observed in F1 males are significantly enriched in predicted ESR1 binding sites, some of which we confirmed to be functional. Our data demonstrate that CD-mediated impairment of reproductive functions could be transmitted to subsequent generations.

Citing Articles

Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts.

Pavani K, Meese T, Pascottini O, Guan X, Lin X, Peelman L Proc Natl Acad Sci U S A. 2022; 119(12):e2122708119.

PMID: 35298333 PMC: 8944274. DOI: 10.1073/pnas.2122708119.


Chlordecone: development of a physiologically based pharmacokinetic tool to support human health risks assessments.

Emond C, Multigner L Arch Toxicol. 2022; 96(4):1009-1019.

PMID: 35122515 PMC: 8921106. DOI: 10.1007/s00204-022-03231-3.


Epigenetic Effects Promoted by Neonicotinoid Thiacloprid Exposure.

Hartman C, Legoff L, Capriati M, Lecuyer G, Kernanec P, Tevosian S Front Cell Dev Biol. 2021; 9:691060.

PMID: 34295895 PMC: 8290843. DOI: 10.3389/fcell.2021.691060.


Epigenetic transgenerational inheritance, gametogenesis and germline development†.

Ben Maamar M, Nilsson E, Skinner M Biol Reprod. 2021; 105(3):570-592.

PMID: 33929020 PMC: 8444706. DOI: 10.1093/biolre/ioab085.


In utero exposure to chlordecone affects histone modifications and activates LINE-1 in cord blood.

Legoff L, Cynthia DCruz S, Bouchekhchoukha K, Monfort C, Jaulin C, Multigner L Life Sci Alliance. 2021; 4(6).

PMID: 33837044 PMC: 8091598. DOI: 10.26508/lsa.202000944.


References
1.
Carroll J, Meyer C, Song J, Li W, Geistlinger T, Eeckhoute J . Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006; 38(11):1289-97. DOI: 10.1038/ng1901. View

2.
Ding J, Shang X, Zhang Z, Jing H, Shao J, Fei Q . FDA-approved medications that impair human spermatogenesis. Oncotarget. 2016; 8(6):10714-10725. PMC: 5354694. DOI: 10.18632/oncotarget.12956. View

3.
Shin H, Liu T, Manrai A, Liu X . CEAS: cis-regulatory element annotation system. Bioinformatics. 2009; 25(19):2605-6. DOI: 10.1093/bioinformatics/btp479. View

4.
Christophersen N, Helin K . Epigenetic control of embryonic stem cell fate. J Exp Med. 2010; 207(11):2287-95. PMC: 2964577. DOI: 10.1084/jem.20101438. View

5.
Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M . Oct4 is required for primordial germ cell survival. EMBO Rep. 2004; 5(11):1078-83. PMC: 1299174. DOI: 10.1038/sj.embor.7400279. View