» Articles » PMID: 29971347

Visual Recency Bias is Explained by a Mixture Model of Internal Representations

Overview
Journal J Vis
Specialty Ophthalmology
Date 2018 Jul 5
PMID 29971347
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Human bias towards more recent events is a common and well-studied phenomenon. Recent studies in visual perception have shown that this recency bias persists even when past events contain no information about the future. Reasons for this suboptimal behavior are not well understood and the internal model that leads people to exhibit recency bias is unknown. Here we use a well-known orientation estimation task to frame the human recency bias in terms of incremental Bayesian inference. We show that the only Bayesian model capable of explaining the recency bias relies on a weighted mixture of past states. Furthermore, we suggest that this mixture model is a consequence of participants' failure to infer a model for data in visual short-term memory, and reflects the nature of the internal representations used in the task.

Citing Articles

Serial dependence: A matter of memory load.

Markov Y, Tiurina N, Pascucci D Heliyon. 2024; 10(13):e33977.

PMID: 39071578 PMC: 11283082. DOI: 10.1016/j.heliyon.2024.e33977.


Tuning perception and decisions to temporal context.

Blonde P, Kristjansson A, Pascucci D iScience. 2023; 26(10):108008.

PMID: 37810242 PMC: 10551895. DOI: 10.1016/j.isci.2023.108008.


The push-pull of serial dependence effects: Attraction to the prior response and repulsion from the prior stimulus.

Sadil P, Cowell R, Huber D Psychon Bull Rev. 2023; 31(1):259-273.

PMID: 37566217 PMC: 11488665. DOI: 10.3758/s13423-023-02320-3.


Attractive and repulsive serial dependence: The role of task relevance, the passage of time, and the number of stimuli.

Ceylan G, Pascucci D J Vis. 2023; 23(6):8.

PMID: 37318441 PMC: 10278548. DOI: 10.1167/jov.23.6.8.


Stronger serial dependence in the depth plane than the fronto-parallel plane between realistic objects: Evidence from virtual reality.

Tanrikulu O, Pascucci D, Kristjansson A J Vis. 2023; 23(5):20.

PMID: 37227714 PMC: 10214883. DOI: 10.1167/jov.23.5.20.


References
1.
Rao R . An optimal estimation approach to visual perception and learning. Vision Res. 1999; 39(11):1963-89. DOI: 10.1016/s0042-6989(98)00279-x. View

2.
Wolpert D, Ghahramani Z . Computational principles of movement neuroscience. Nat Neurosci. 2000; 3 Suppl:1212-7. DOI: 10.1038/81497. View

3.
Fiser J, Berkes P, Orban G, Lengyel M . Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci. 2010; 14(3):119-30. PMC: 2939867. DOI: 10.1016/j.tics.2010.01.003. View

4.
Griffiths T, Chater N, Kemp C, Perfors A, Tenenbaum J . Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn Sci. 2010; 14(8):357-64. DOI: 10.1016/j.tics.2010.05.004. View

5.
Murray R, Morgenstern Y . Cue combination on the circle and the sphere. J Vis. 2010; 10(11):15. DOI: 10.1167/10.11.15. View