» Articles » PMID: 29967119

After the Fact(or): Posttranscriptional Gene Regulation in Enterohemorrhagic Escherichia Coli O157:H7

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2018 Jul 4
PMID 29967119
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

To adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagic (EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.

Citing Articles

Low leucine levels in the blood enhance the pathogenicity of neonatal meningitis-causing Escherichia coli.

Sun H, Li X, Yang X, Qin J, Liu Y, Zheng Y Nat Commun. 2025; 16(1):2466.

PMID: 40075077 PMC: 11904087. DOI: 10.1038/s41467-025-57850-2.


A novel small RNA regulates Locus of Enterocyte Effacement and site-specific colonization of enterohemorrhagic O157:H7 in gut.

Han R, Qian Y, Zheng C Front Cell Infect Microbiol. 2025; 14:1517328.

PMID: 39882344 PMC: 11774850. DOI: 10.3389/fcimb.2024.1517328.


The and fimbrial loci influence gene expression and virulence in enterohemorrhagic O157:H7.

Gonyar L, Sauder A, Mortensen L, Willsey G, Kendall M mSphere. 2024; 9(7):e0012424.

PMID: 38904402 PMC: 11287998. DOI: 10.1128/msphere.00124-24.


ST11 (O157:H7) does not encode a functional AcrF efflux pump.

Pugh H, Connor C, Siasat P, McNally A, Blair J Microbiology (Reading). 2023; 169(4).

PMID: 37074150 PMC: 10202319. DOI: 10.1099/mic.0.001324.


Regulation of flagellar motility and biosynthesis in enterohemorrhagic O157:H7.

Sun H, Wang M, Liu Y, Wu P, Yao T, Yang W Gut Microbes. 2022; 14(1):2110822.

PMID: 35971812 PMC: 9387321. DOI: 10.1080/19490976.2022.2110822.


References
1.
Vingadassalom D, Campellone K, Brady M, Skehan B, Battle S, Robbins D . Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation. PLoS Pathog. 2010; 6(8):e1001056. PMC: 2924363. DOI: 10.1371/journal.ppat.1001056. View

2.
Perna N, Plunkett 3rd G, Burland V, Mau B, Glasner J, Rose D . Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001; 409(6819):529-33. DOI: 10.1038/35054089. View

3.
Bergholz T, Whittam T . Variation in acid resistance among enterohaemorrhagic Escherichia coli in a simulated gastric environment. J Appl Microbiol. 2007; 102(2):352-62. DOI: 10.1111/j.1365-2672.2006.03099.x. View

4.
Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D . Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature. 2007; 450(7170):670-5. DOI: 10.1038/nature05996. View

5.
Chen J, Gottesman S . Hfq links translation repression to stress-induced mutagenesis in . Genes Dev. 2017; 31(13):1382-1395. PMC: 5580658. DOI: 10.1101/gad.302547.117. View