» Articles » PMID: 29949392

Rodent Models of AKI-CKD Transition

Overview
Specialties Nephrology
Physiology
Date 2018 Jun 28
PMID 29949392
Citations 113
Authors
Affiliations
Soon will be listed here.
Abstract

Acute kidney injury (AKI) is a contributing factor in the development and progression of chronic kidney disease (CKD). Despite rapid progresses, the mechanism underlying AKI-CKD transition remains largely unclear. Animal models recapitulating this process are crucial to the research of the pathophysiology of AKI-CKD transition and the development of effective therapeutics. In this review, we present the commonly used rodent models of AKI-CKD transition, including bilateral ischemia-reperfusion injury (IRI), unilateral IRI, unilateral IRI with contralateral nephrectomy, multiple episodes of IRI, and repeated treatment of low-dose cisplatin, diphtheria toxin, aristolochic acid, or folic acid. The main merits and pitfalls of these models are also discussed. This review provides helpful information for establishing reliable and clinically relevant models for studying post-AKI development of chronic renal pathologies and the progression to CKD.

Citing Articles

Oxidative stress and NRF2 signaling in kidney injury.

Ng C, Kim M, Yanti , Kwak M Toxicol Res. 2025; 41(2):131-147.

PMID: 40013079 PMC: 11850685. DOI: 10.1007/s43188-024-00272-x.


An adoptive cell therapy with TREM2-overexpressing macrophages mitigates the transition from acute kidney injury to chronic kidney disease.

Zhang Y, Liu Y, Luo S, Liang H, Guo C, Du Y Clin Transl Med. 2025; 15(3):e70252.

PMID: 40000418 PMC: 11859120. DOI: 10.1002/ctm2.70252.


Temporary bilateral clamping of renal arteries induces ischemia-reperfusion: A new pig model of acute kidney injury using total intravenous anesthesia.

Guilpin A, Magnin M, Aigle A, Ayoub J, Schuhler T, Lac R Physiol Rep. 2025; 13(3):e70203.

PMID: 39895016 PMC: 11788332. DOI: 10.14814/phy2.70203.


Butyrolactone I blocks the transition of acute kidney injury to chronic kidney disease in mice by targeting JAK1.

Zhang Z, Zhao Z, Qi C, Zhang X, Xiao Y, Chen C MedComm (2020). 2025; 6(2):e70064.

PMID: 39845897 PMC: 11751251. DOI: 10.1002/mco2.70064.


Panax Notoginseng Saponins Inhibit Apoptosis and Alleviate Renal Ischemia-Reperfusion Injury Through the ROCK2/NF-κB Pathway.

Xin L, Kanghao N, Jiacheng L, Xiaodong Y, Juhan Y, Xinyang Z Mol Biotechnol. 2025; .

PMID: 39820853 DOI: 10.1007/s12033-025-01366-z.


References
1.
FINN W . Enhanced recovery from postischemic acute renal failure. Micropuncture studies in the rat. Circ Res. 1980; 46(3):440-8. DOI: 10.1161/01.res.46.3.440. View

2.
Sharp C, Doll M, Megyesi J, Oropilla G, Beverly L, Siskind L . Subclinical kidney injury induced by repeated cisplatin administration results in progressive chronic kidney disease. Am J Physiol Renal Physiol. 2018; 315(1):F161-F172. PMC: 6087791. DOI: 10.1152/ajprenal.00636.2017. View

3.
Jadot I, Colombaro V, Martin B, Habsch I, Botton O, Nortier J . Restored nitric oxide bioavailability reduces the severity of acute-to-chronic transition in a mouse model of aristolochic acid nephropathy. PLoS One. 2017; 12(8):e0183604. PMC: 5568239. DOI: 10.1371/journal.pone.0183604. View

4.
Ravichandran K, Wang Q, Ozkok A, Jani A, Li H, He Z . CD4 T cell knockout does not protect against kidney injury and worsens cancer. J Mol Med (Berl). 2015; 94(4):443-55. DOI: 10.1007/s00109-015-1366-z. View

5.
Yang L, Xing G, Wang L, Wu Y, Li S, Xu G . Acute kidney injury in China: a cross-sectional survey. Lancet. 2015; 386(10002):1465-71. DOI: 10.1016/S0140-6736(15)00344-X. View