» Articles » PMID: 29924328

Homeobox Gene Duplication and Divergence in Arachnids

Abstract

Homeobox genes are key toolkit genes that regulate the development of metazoans and changes in their regulation and copy number have contributed to the evolution of phenotypic diversity. We recently identified a whole genome duplication (WGD) event that occurred in an ancestor of spiders and scorpions (Arachnopulmonata), and that many homeobox genes, including two Hox clusters, appear to have been retained in arachnopulmonates. To better understand the consequences of this ancient WGD and the evolution of arachnid homeobox genes, we have characterized and compared the homeobox repertoires in a range of arachnids. We found that many families and clusters of these genes are duplicated in all studied arachnopulmonates (Parasteatoda tepidariorum, Pholcus phalangioides, Centruroides sculpturatus, and Mesobuthus martensii) compared with nonarachnopulmonate arachnids (Phalangium opilio, Neobisium carcinoides, Hesperochernes sp., and Ixodes scapularis). To assess divergence in the roles of homeobox ohnologs, we analyzed the expression of P. tepidariorum homeobox genes during embryogenesis and found pervasive changes in the level and timing of their expression. Furthermore, we compared the spatial expression of a subset of P. tepidariorum ohnologs with their single copy orthologs in P. opilio embryos. We found evidence for likely subfunctionlization and neofunctionalization of these genes in the spider. Overall our results show a high level of retention of homeobox genes in spiders and scorpions post-WGD, which is likely to have made a major contribution to their developmental evolution and diversification through pervasive subfunctionlization and neofunctionalization, and paralleling the outcomes of WGD in vertebrates.

Citing Articles

Development and patterning of a highly versatile visual system in spiders.

Baudouin Gonzalez L, Schonauer A, Harper A, Arif S, Leite D, Steinhoff P Proc Biol Sci. 2025; 292(2042):20242069.

PMID: 40068820 PMC: 11896711. DOI: 10.1098/rspb.2024.2069.


Three Novel Spider Genomes Unveil Spidroin Diversification and Hox Cluster Architecture: Ryuthela nishihirai (Liphistiidae), Uloborus plumipes (Uloboridae) and Cheiracanthium punctorium (Cheiracanthiidae).

Schoneberg Y, Audisio T, Ben Hamadou A, Forman M, Kral J, Korinkova T Mol Ecol Resour. 2024; 25(1):e14038.

PMID: 39435585 PMC: 11646306. DOI: 10.1111/1755-0998.14038.


The link between gene duplication and divergent patterns of gene expression across a complex life cycle.

DuBose J, de Roode J Evol Lett. 2024; 8(5):726-734.

PMID: 39328286 PMC: 11424080. DOI: 10.1093/evlett/qrae028.


Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development.

Medina-Jimenez B, Budd G, Pechmann M, Posnien N, Janssen R Evodevo. 2024; 15(1):11.

PMID: 39327634 PMC: 11428483. DOI: 10.1186/s13227-024-00230-6.


A taxon-restricted duplicate of Iroquois3 is required for patterning the spider waist.

Setton E, Ballesteros J, Blaszczyk P, Klementz B, Sharma P PLoS Biol. 2024; 22(8):e3002771.

PMID: 39208370 PMC: 11361693. DOI: 10.1371/journal.pbio.3002771.


References
1.
Guerreiro I, Nunes A, Woltering J, Casaca A, Novoa A, Vinagre T . Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc Natl Acad Sci U S A. 2013; 110(26):10682-6. PMC: 3696775. DOI: 10.1073/pnas.1300592110. View

2.
Dehal P, Boore J . Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005; 3(10):e314. PMC: 1197285. DOI: 10.1371/journal.pbio.0030314. View

3.
Hoegg S, Meyer A . Hox clusters as models for vertebrate genome evolution. Trends Genet. 2005; 21(8):421-4. DOI: 10.1016/j.tig.2005.06.004. View

4.
Bataille L, Frendo J, Vincent A . Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles. Mech Dev. 2015; 138 Pt 2:170-176. DOI: 10.1016/j.mod.2015.07.005. View

5.
Zagozewski J, Zhang Q, Pinto V, Wigle J, Eisenstat D . The role of homeobox genes in retinal development and disease. Dev Biol. 2014; 393(2):195-208. DOI: 10.1016/j.ydbio.2014.07.004. View